Classical and quantum analysis of quasiresonance in grazing atom-surface collisions

Citation:

Ruiz, A., Palao, J.P. & Heller, E.J. Classical and quantum analysis of quasiresonance in grazing atom-surface collisions. Physical Review A 79, 052901 (2009).

Abstract:

Quasiresonance is a general effect that may arise from the coupling between approximately resonant degrees of freedom in a system perturbed by some transient interaction. In a process induced by a slowly switching on and off of the coupling interaction, quasiresonance is characterized by the existence of significant ranges of initial states in the perturbed system over which some very specific and efficient transfer of energy between the approximately resonant degrees of freedom occurs. This work presents a classical and quantum analysis of quasiresonant processes in grazing incident angle atom-surface collisions. The momentum transfer between the normal components to an index direction is investigated. For fast atoms with grazing angle of incidence there is an interval of azimuthal angles around the index directions, the quasiresonance region, in which the energy transfer can be very efficient. This effect is reflected in quantum diffraction patterns with large nonspecular peaks, associated with the parallel to the surface and normal to the index direction momentum component. We demonstrate the essentially classical underlying mechanism for the persistence of a pattern of diffraction peak intensities for incidence close to an index direction. The analysis also shows that the size of the quasiresonance region is approximately equal to the spectral width of the diffraction pattern.

Publisher's Version

Last updated on 10/07/2016