Imaging and manipulating electrons in a one-dimensional quantum dot with Coulomb blockade microscopy

Citation:

Qian, J., Halperin, B.I. & Heller, E.J. Imaging and manipulating electrons in a one-dimensional quantum dot with Coulomb blockade microscopy. Physical Review B 81, 125323 (2010).

Abstract:

Motivated by recent experiments by the Westervelt group, which used a mobile tip to probe the electronic state of a segmented nanowire, we calculate shifts in Coulomb blockade peak positions, as a function of tip location, which we term “Coulomb blockade microscopy.” We show that if the tip can be brought sufficiently close to the nanowire, one can distinguish a high-density electronic liquid state from a Wigner-crystal state by microscopy with a weak-tip potential. In the opposite limit of a strongly negative tip potential, the potential depletes the electronic density under it and divides the quantum wire into two partitions. There the tip can push individual electrons from one partition to the other and the Coulomb blockade micrograph can clearly track such transitions. We show that this phenomenon can be used to qualitatively estimate the relative importance of the electron interaction compared to one-particle potential and kinetic energies. Finally, we propose that a weak-tip Coulomb blockade micrograph focusing on the transition between electron number N=0 and N=1 states may be used to experimentally map the one-particle potential landscape produced by impurities and inhomogeneities.

Publisher's Version

Last updated on 10/07/2016