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Abstract

This thesis treats a number of topics in low energy quantum scattering. Recur-

rent themes include resonance and interference phenomena arising from quan-

tum multiple scattering. In Chapter 2, we discuss the effect of confining a

point scatterer in a two dimensional strip waveguide; we show that the system’s

transport properties can be described by a single renormalized wavefunction.

Chapter 3 discusses scattering from gratings of point scatterers, with the ob-

jective of examining whether a row of atoms could potentially be used to guide

matter waves. In Chapter 4, we develop formalisms to deal with a number of

systems in which multiple scattering coexists with periodicity. In Chapter 5,

which departs from the multiple scattering methods of the previous chapters,

we discuss the role of degeneracy in two simple models of atomic systems.
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Chapter 1

Introduction and Outline of

Thesis

The work in this thesis examines scattering in a number of few-body, low-energy,
quantum systems: This thesis is, in essence, an exploration of interference, of
resonance, and of waves. Several of the systems I study seem deceptively simple
at first glance. Yet, if this thesis has a theme, it is that waves are subtle. Even
small quantum systems, when studied in detail, unfold to reveal a rich multitude
of complicated interference phenomena that defy intuition: A scatterer in a wire
can be transparent; a wall of atoms can guide waves focused on one end.

Our study of scattering phenomena begins in Chapter 2, where I examine the
problem of scattering from an impurity confined in a quantum wire. Although
this problem is a single scattering problem with boundary conditions, it is also a
problem of multiple scattering: Amplitude confined to a waveguide can scatter
from an impurity, reflect from the waveguide walls, and scatter again. Once we
have accounted for the reflections from the walls, direct analogs of free space
partial waves and cross sections, as well as the optical theorem, turn out to exist
in a confined geometry. Our principal result in this chapter is to express the
transport through the wire in terms of a single wavefunction which contains all
the reflection and interference effects.

In Chapter 3, we investigate the scattering of scalar waves from quasi-1D
periodic and near-periodic gratings constructed from point scatterers, and em-
bedded in 2D. Such gratings can be built from individual atoms, for example
via the same techniques used to build “quantum corrals.” Multiple scattering
theory has been tremendously successful at modeling the transport properties of
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quantum corrals; we apply similar methods here to understand scattering from,
as well as conduction by, gratings constructed from point scatterers. We discuss
conditions under which arrays of atoms can guide a beam focused at one end of
the array, raising the possibility of using a finite grating of atoms as a guide for
matter waves.

Chapter 4 applies variants of the solutions in the previous chapters to solve
for the scattered wavefunction in a number of other few body systems. In this
chapter, we examine the following problems: Scattering of two atoms confined
on a tube; scattering in a circular corral; scattering from a confined two-level
atom; scattering from double walls; and scattering in a wire, including higher
partial waves. This chapter is mostly methodological; we show how each of
these systems can be solved by a variant of the renormalized t matrix methods
presented in [1], and in each case our final result is an analytic expression for
the scattered wavefunction.

Chapters 2, 3, and 4 of this thesis are based on 2D multiple scattering theory.
I encourage the reader to begin directly with Chapters 2 and 3, which constitute
the bulk of this thesis, and which are entirely self contained. These chapters
utilize the concept of a t matrix extensively, and for those who are interested,
I have presented in Appendix A an abbreviated discussion of how to use a t

matrix to simulate the s wave scattering of any potential, as well as pointers to
a number of references.

Chapter 5 departs from the previous time-independent scattering problems:
In Chapter 5 we examine the role of degeneracy in two simple quantum mechan-
ical systems. In Section 5.1, we begin by considering resonant energy transfer
between two atoms, when one atom is in a trapped state and the other is in
an antitrapped state. We frame the problem in terms of adiabatic vs. diabatic
dynamics, and examine collisions via time dependent wavepacket methods. In
Section 5.2 we look at the presence of degeneracy in a toy model of four atoms
interacting on a plane. In a system where the energy depends on N degrees of
freedom, it is a general rule that the space of degeneracies has codimension two;
for example, a triatomic molecule has two nontrivial degrees of freedom, and
the degeneracies occur at a point. In a system with many degrees of freedom,
the degeneracies form complicated hypersurfaces. Each time the system makes
a circuit of one of these surfaces, it acquires a Berry phase. We use numerical
methods to visualize the surfaces of degeneracies, and find that even in this toy
model, they have an intricate structure.

Throughout this thesis, unless otherwise noted, we use units ~ = m = c = 1.



Chapter 2

Scattering from Impurities

in Quantum Wires

This chapter develops a scattering theory to examine how point impurities af-
fect transport through quantum wires. While some of our new results apply
specifically to hard-walled wires, others–for example, an effective optical theo-
rem for two-dimensional waveguides–are more general. We apply the method
of images to the hard-walled guide, explicitly showing how scattering from an
impurity affects the wire’s conductance. We express the effective cross section of
a confined scatterer entirely in terms of the empty waveguide’s Green’s function,
suggesting a way in which to use semiclassical methods to understand transport
properties of smooth wires. In addition to predicting some new phenomena, our
approach provides a simple physical picture for previously observed effects such
as conductance dips and confinement induced resonances.

2.1 Introduction

Elastic scattering from a point defect in a hard-walled, multimode quantum
waveguide is a problem which has been the subject of experimental [2, 3] and
theoretical [4–9] inquiry in both condensed matter and atomic physics. In this
chapter, we revisit the problem from an unconventional point of view, reducing
it to the scattering of a single effective wavefunction off an array of images. Our
approach enables us to easily understand complex transport phenomena which
have already been observed (such as conductance dips), as well as predict other
new ones.
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Figure 2.1: Schematic of the quantum wire, with a point impurity of scattering
length a at ~r0 = (x0, y0). We assume infinite leads, and hard walls at y = 0 and
y = d.

The problem of scattering from pointlike impurities in waveguides is a gen-
eral one, and thus has physical applications in several fields. Impurity scattering
in quantum wires, and the resulting disorder effects on electron transport, have
long been of interest in mesoscopic physics. Specifically, the problem arises in
the context of two-dimensional electron gases (2DEGs) confined by quantum
wire potentials; the impurity can represent a defect in the wire. Such quantum
waveguides can be fabricated at low-temperature Ga1−xAlxAs interfaces, and
are of interest due to their potential role in high-frequency and quantum de-
vices. As carbon nanotubes can behave as few-mode quantum waveguides [10],
our results are relevant to transport in nanotubes with adsorbed impurities–of
interest in the study of biosensors. The problem of scattering in confined geome-
tries arises in atom waveguides as well, with potential implications for quantum
computing and atom interferometry. In both cases, atoms must maintain co-
herence as they pass through the waveguide, and the goal is thus to minimize
phenomena such as collisional phase shifts [11]. Finally, the wave phenomena
arising in quantum waveguides are in direct mathematical correspondence with
a number of wave phenomena in other systems: Water waves resonantly trapped
between an array of cylinders [12], large antenna arrays [13], and sound waves
directed by “Bessel” line arrays in acoustics [14].

Motivated by the above applications, we examine low-energy scattering of
noninteracting particles from impurities in an infinite two-dimensional quantum
wire, with hard walls at y = 0 and y = d. The wire (Fig. 4.6) contains a point
impurity, which we model as an s wave scatterer of effective radius a.

Our method differs from previous treatments, such as the renormalized t

matrix method [11, 15, 16], in that we use an unconventional approach which
combines the following three ideas:

1. The method of images.

2. The realization that a confined scatterer, like a free space scatterer, is a
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rank-one target. We can, therefore, combine the N degenerate transverse
modes into a basis in which only a single wavefunction scatters.

3. That the effect of scattering from the waveguide walls is to renormalize
this single scattering wavefunction, so that it takes on a new effective value
at the scatterer location.

Using the method of images allows us to explicitly understand how each re-
flection from the waveguide walls affects the conductance. The fact that the
confined scatterer is a rank one target enables us to express the transport prop-
erties of the wire entirely in terms of the single scattering wavefunction. Finally,
the idea of renormalization allows us to fully explain the transport properties of
the wire in terms of reflections of this single wavefunction from the waveguide
walls.

In Section 2.2, we review free space multiple scattering, anticipating phe-
nomena which will appear in the wire. Section 2.3 lays out a similar formalism
for scattering in the waveguide. In Section 2.4, we present physical phenomena
which we observed in our model, which we interpret in Section 2.5 in terms of
interference effects. We relegate mathematical details to Appendices B-C.

2.2 Preliminaries: Review of Free Space Scat-

tering

In Section 2.3, we show that the Lippmann-Schwinger equation for scattering
from a confined impurity resembles the free space Lippmann-Schwinger equa-
tion, with the exception that in the wire, a renormalized incoming wavefunction
replaces the true one. Surprisingly, even for a single confined scatterer, this
renormalized wavefunction includes free space multiple scattering effects. We
thus begin by briefly reviewing free space scattering, emphasizing the three phe-
nomena which will reappear in the Lippmann-Schwinger equation for a single
scatterer in the waveguide.

Consider N pointlike impurities in two-dimensional free space, located at
{~r1, . . . , ~rN} . Let V (|~r − ~ri|) be the potential at ~r due to the ith scatterer. We
seek scattering solutions ψ(~r) to the time-independent Schrodinger equation[

− ~2

2m
~∇2 +

N∑
i=1

V (|~r − ~ri|)− E

]
ψ(~r) = 0, (2.1)

under the assumption of low-energy, s-wave scattering. Except as noted, we



henceforth use atomic units, where ~ = m = c = 1. Applying the t matrix
formalism, [17] we characterize a single scatterer at ~ri by its t matrix,

t = s(k) |~ri〉〈~ri| (2.2)

where s(k) is a function of the wavenumber, k =
√

2mE/~. We choose the
functional form of s(k) to simulate the scatterer of interest, under the constraint
that s(k) must satisfy the optical theorem

-2Ims(k) = |s(k)|2 . (2.3)

In this chapter, we choose

s(k) = −2i
~2

m

J0(ka)

H
(1)
0 (ka)

, (2.4)

which represents a hard disk of scattering length a.

2.2.1 Single Scatterer

Consider a single scatterer at ~r = ~r0. In our t matrix representation, an inci-
dent wave φ(~r) scatters into a wavefunction ψ(~r) according to the Lippmann-
Schwinger equation

ψ(~r) = φ(~r) + s(k)φ(~r0)G0(~r, ~r0; k) (2.5)

where

G0(~r, ~r0; k) =
2m
~2

[
− i

4
H

(1)
0 (k|~r − ~r0|)

]
(2.6)

is the 2D free space advanced Green’s function satisfying(
~∇2 + k2

)
G0(~r, ~r0; k) =

2m
~2

δ(2)(~r − ~r0). (2.7)

We shall henceforth assume we are using the advanced Green’s function and
omit the superscript on the Hankel function; we shall also omit the implicit k
dependence in the Green’s function.



2.2. Preliminaries: Review of Free Space Scattering 7

2.2.1.1 Single Scattering Wavefunction

Any incoming wave φ(~r) must be a solution to the free space Schrodinger equa-
tion. We can therefore express φ(~r) in the basis of “cylinder harmonics,”

φ(~r) =
∞∑
m=0

cmJm(k|~r − ~r0|)×
eim(φ−φ0)

√
2π

(2.8)

where m = 0, 1, 2, . . . correspond to s,p,d, . . . waves. An s wave scatterer in
free space is a rank one perturbation: Of all the terms in (2.8), only the m = 0
term is nonzero at the scatterer. From (2.5), then, only the s wave scatters, ac-
quiring a phase shift; remaining higher partial waves pass through the scatterer
unperturbed. While trivial in free space, these facts will reappear more subtly
in the wire.

2.2.2 Multiple Scatterers

The Lippmann-Schwinger equation describing scattering from a collection of N
identical point scatterers at {~r1, . . . , ~rN} is

ψ(~r) = φ(~r) + s(k)
N∑
i=1

ψi(~ri)G0(~r, ~ri) (2.9)

in which we express the ψi(~ri) recursively as

ψi(~ri) = φ(~ri) + s(k)
N∑
j=1

j 6=i

ψj(~rj)G0(~ri, ~rj). (2.10)

where we have followed Foldy’s method. [18] Comparing (3.2-2.10) with the
single-scatterer version (2.5), the ψi(~ri) are the effective incoming wavefunc-
tions at each scatterer: ψi(~ri) is the amplitude incident on the ith scatterer
after scattering from each of the other scatterers. A crucial point is that ψi(~ri)
excludes the singular self-interaction of the ith scatterer.

Defining ~φi ≡ φ(~ri), ~ψi ≡ ψ(~ri), inverting (3.2-2.10) yields

~ψ = (1− sG)−1~φ (2.11)

where

Gij ≡

{
G0(~ri, ~rj) i 6= j

0 i = j
(2.12)



excludes the singular term. An alternate expression of (2.11) is as the Born
series

~ψ =
[
1 + sG + (sG)2 + (sG)3 + . . .

]
~φ. (2.13)

The effective wavefunctions thus have a simple interpretation in terms of in-
terfering paths: The terms in square brackets describe amplitude incident at ~ri
after interactions with zero, one, two, or three other scatterers respectively. The
series continues infinitely.

Anticipating phenomena that will reappear in the wire, we highlight the
following points of this section:

1. The effect of multiple scattering is to create a new effective incoming
wavefunction at each scatterer.

2. The effective wavefunction at a particular scatterer is a sum of waves
scattered from all the other scatterers, and excludes the (singular) self-
interaction of the scatterer.

3. An s wave scatterer in free space is a rank one target.

2.3 Scatterer in a Wire

In this section, we examine how confinement in a wire affects the transport
properties of a scatterer. Applying the method of images, we derive a form of the
empty wire Green’s function. Using this form of the Green’s function, we show
that the sole effect of confinement is to renormalize the incoming wavefunction.
The image representation allows us to very simply calculate the renormalization
coefficient. We define an effective cross section for a confined scatterer, and
relate it to the conductance of the wire-impurity system. We derive an effective
optical theorem in the wire. Finally, applying this formalism, we investigate the
behavior of the cross section and conductance as functions of various parameters.

2.3.1 Green’s Function via the Method of Images

In order to write down the Lippmann-Schwinger equation for an impurity in the
wire, we require the Green’s function Gw(~r, ~r0) of the empty wire. The usual
spectral form of the empty wire Green’s function is

Gw(~r, ~r0) = −i
∞∑
m=1

1

k
(m)
x

χm(y)χm(y0)eik
(m)
x |x−x0| (2.14)



2.3. Scatterer in a Wire 9

where the χm(y) are the transverse modes for the particular waveguide (see e.g.
Datta [19]). In our hard wire, the modes have the form

χm(y) =

{ √
2
d sin

(
mπy
d

)
0 < y < d

0 y < 0, y > d.
(2.15)

We note that the spectral Green’s function (2.14) is a sum over evanescent modes
as well as propagating ones.

Although we could, in principle, proceed using the spectral form (2.14) of the
Green’s function, the spectral Green’s function provides little physical insight
into the precise mechanism of the scattering. We therefore take an alternative
approach, and use the method of images to derive an alternate, equivalent form
of (2.14) for the hard wire.

Although the problem of an impurity in a hard wire has been the subject
of numerous theoretical studies, [4–9] the authors are aware of only one work
[20] which applies the method of images: [20] treats the related problem of
a point scatterer in a 3D waveguide of rectangular cross section, which the
authors reduce to the problem of scattering from an impurity in a finite, 2D
box. The method of images has the significant advantage of making multiple
scattering effects explicit. We shall thus use the approach of [20], rather than the
more common spectral methods. Because our problem of an infinite waveguide
is somewhat simpler than the finite box treated in [20], the role of multiple
scattering is more transparent. We are therefore able to explore in detail the
considerable effect of multiple scattering on the physical properties of the wire,
which, although briefly mentioned, is not examined in [20].

The empty wire Green’s function Gw(~r, ~r0) satisfies Green’s equation inside
the wire, and is zero on the wire walls:

(~∇2 + k2)Gw(~r, ~r0) = 2δ(~r − ~r0) (2.16)

Gw(x, 0) = Gw(x, d) = 0 (2.17)

The confined Green’s function differs from the free space version due to the
necessity of including reflections off the walls when describing the response to a
point excitation. Note the factor of two in (2.16), obtained by casting (2.7) in
atomic units.

As in electrostatics, we can linearly combine free space Green’s functions
(2.6) with point sources in different places, so that the linear combination satis-



Figure 2.2: The method of images allows us to reduce the problem of a single
scatterer in a wire to that of a periodic array of scatterers in free space. The
solid lines and black scatterer are the actual wire and point source. The gray
point sources, and the dashed lines, are images. The pluses and minuses refer
to the sign of the free-space Green’s function term that the particular point
source contributes. The alternating signs of these contributions are due to the
Dirichlet boundary conditions; the wavefunction must cancel on the wire walls.

fies (2.17). As long as only one of the point sources is inside the wire (0 < y < d),
our sum will satisfy (2.16) inside the wire. Outside the wire, we discard the so-
lution. If the point source is located at ~r = (x0, y0), we use the configuration
of image point sources in Fig. 2.2. We reflect the scatterer, creating a series of
images such that the position of the nth image is ~rn = x0x̂+ [(−1)ny0 + 2nd]ŷ.

This image configuration yields an empty wire Green’s function of the form

Gw(~r, ~r0) =
∞∑

n=−∞
(−1)nG0(~r,~rn) (2.18)

The Green’s function (2.18) satisfies (2.16) inside the wire, and (2.17) on the
wire boundaries. Outside the wire we implicitly set the Green’s function to zero.
The Green’s function satisfies the Dirichlet boundary conditions because, as we
take infinitely many images, the alternating sum of Hankel functions converges
to zero on the walls. This series converges extremely slowly, precluding its use
for numerical purposes (see the discussion in [21]).

2.3.2 Renormalizing the Incoming Wavefunction

The Lippmann-Schwinger equation requires knowledge of both the Green’s func-
tion and the incoming wavefunction. In Section 2.2.1, we calculated the Green’s
function for the wire. In this section, we discuss the incident wavefunction.
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We show that the effects of confinement resemble free space multiple scatter-
ing: Confinement renormalizes the effective wavefunction at the scatterer from
its true value. In the image formalism, the multiple scattering arises due to
scattering off images.

Applying the free space multiple scattering formalism (3.2,2.10) to the array
of images in Fig. 2.2, we find that the Lippmann-Schwinger equation for the
wire is

ψ(~r) = φ(~r) + s

∞∑
i=−∞

G0(~r, ~ri)ψi(~ri) (2.19)

where

ψi(~ri) = φ(~ri) + s

∞∑
j=−∞
j 6=i

G0(~ri, ~rj)ψj(~rj). (2.20)

Recall from our discussion of free space multiple scattering the physical meaning
of this recursive Lippmann-Schwinger equation: The ψi(~ri) defined in (2.20) are
the effective incoming wavefunctions at the ith scatterer in the array. In a general
multiple scattering problem, we would have to stop here and solve numerically.
The image array is, however, a special case: Not only is it periodic, but the
boundary conditions at the wall impose the antisymmetry

φ(~ri) = (−1)iφ(~r0)

ψi(~ri) = (−1)iψ0(~r0). (2.21)

Any wavefunction, incident or scatterered, must be zero on the walls. Thus,
inside the wire, in the y direction, the wavefunction is a superposition of modes
(2.15). Replacing the wire with an image array requires that we extend these
modes outside the wire, into the region y < 0, y > d. Keeping the χm(y)
continuous at the walls, we can extend them so that the wavefunction is either
symmetric or antisymmetric across the wire walls; either set forms a basis.
However, we know that in the absence of a wall χ′m(y) must be continuous also,
as we have eliminated the hard walls. The symmetric extension does not satisfy
this condition. We therefore discard the symmetric extension, leaving (2.21) as
the proper boundary condition.

Combining (2.20) and (2.21), the equation for the wavelets thus becomes

ψi(~ri) = (−1)i [φ(~r0) + sψ0(~r0)Gr] (2.22)



where we have defined the renormalization sum

Gr ≡
∞∑

i=−∞
i 6=0

(−1)iG0(~ri, ~r0) (2.23)

noting that

Gr = (−1)j
∞∑

i=−∞
i 6=j

(−1)iG0(~ri, ~rj). (2.24)

Taking i = 0 in (2.22), we find

ψ0(~r0) =
φ(~r0)

1− sGr
(2.25)

Substituting (2.21,2.25) into (2.19) yields the Lippmann-Schwinger equation for
scattering from an impurity in a wire:

ψ(~r) = φ(~r) + s

[
φ(~r0)

1− sGr

] ∞∑
i=−∞

(−1)iG0(~r, ~ri) (2.26)

= φ(~r) + s

[
φ(~r0)

1− sGr

]
Gw(~r, ~r0). (2.27)

Comparing (2.27) to the free space Lippmann-Schwinger equation (2.5) for a
single scatterer, we see that the wire simply renormalizes the incoming wave-
function at the scatterer to have a new effective value

φ̃(~r0) =
φ(~r0)

1− sGr
(2.28)

and so our final Lippmann-Schwinger equation is

ψ(~r) = φ(~r) + sφ̃(~r0)Gw(~r, ~r0). (2.29)

For convenience, we define a renormalization factor

R ≡ φ(~r0)
φ̃(~r0)

(2.30)

which is the ratio between the original and renormalized incoming wavefunctions
at the scatterer.

In order to cast the renormalized incoming wavefunction in terms of inter-
fering paths, we expand perturbatively, as we did in (2.13) for free space. For
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shorthand, define
Gi→j ≡ (−1)i+jG(~ri, ~rj). (2.31)

We find

φ̃(~r0) = (1 + sGr + s2G2
r + . . . )φ(~r0)

=

1 +
∞∑

i=−∞
i 6=0

sGi→0

+
∞∑

i=−∞
i 6=0

∞∑
j=−∞
j 6=0

sGi→0 × sGj→0 + . . .

φ(~r0)

=

1 +
∞∑

i=−∞
i 6=0

sGi→0 (2.32)

+
∞∑

i=−∞
i 6=j

∞∑
j=−∞
j 6=0

sGi→j × sGj→0

φ(~r0)

where we have used (2.24). The nth term of the sum (2.32) describes propagation
to ~r0 after scattering from any n − 1 images, beginning with the first term,
which describes free propagation to ~r0. Alternately, the nth term corresponds
to n scattering events combined with any number of reflections off the wall,
each of which introduces an additional phase of -1. Fig. 2.3 illustrates the
correspondence between scattering from an image and reflecting from the wall.

Renormalization of the effective wavefunction is simply the manifestation of
the identical phenomenon in free space (see item 1 in the list of Section 2.2.2).
From a semiclassical point of view, the incoming wave, given infinite time to
spread, reflects from each possible combination of scatterers before returning to
the source. Note that Gr is simply the wire’s Green’s function evaluated at the
scatterer, with the singular self-interaction of the source removed,

Gr = lim
~r→~r0

[Gw(~r, ~r0)−G0(~r, ~r0)] . (2.33)

This idea, as expressed in (2.33), is the essence of“renormalized t matrix theory”



Figure 2.3: Amplitude scattering from the nth image corresponds to amplitude
reaching a point after n bounces from the wall, each of which reverses the
sign of the wavefunction (phrased semiclassically, reflections introduce a Maslov
index of -1). Resonances occur when the interference of all paths is maximally
constructive at the scatterer itself.

[1, 11, 16]. The theory, as applied to our case, is equivalent to the idea that in
free space multiple scattering, the effective wavefunction at a scatterer excludes
the singular self-interaction (see item 2 of Section 2.2.2). We note that although
we have derived (2.33) via images only for the special case of a hard walled
guide, the result (usually derived perturbatively) is in fact true for an arbitrary
guide or confining potential [1].

2.3.3 Method of Images vs. Spectral Formulation

We have presented both the image series (2.18) and the spectral series (2.14)
for the Green’s function. Because the Green’s function of a system is unique,
these two forms must be equivalent. However, the physical relationship between
the method of images and the spectral form is far from obvious. The two forms
of the Green’s function highlight different physical phenomena. For example,
reflections from the walls, which appear immediately in (2.18), are far less ob-
vious in the spectral form (2.14). Contrastingly, the role of evanescent channels
in the scattering, while straightforward in the spectral Green’s function (2.14),
is less transparent in the image expansion (2.18) of the same Green’s function
(although even the image expansion suggests that evanescent channels will be
present in some form, because Hankel functions are singular). In order to un-
derstand the connection between the image and spectral forms of the Green’s
function, we show their equivalence mathematically in Appendix B.

In Appendix A, we use an integral form of the Hankel function to show the
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equivalence of (2.18) and (2.14). The physical connection between the image and
spectral formalisms is diffraction. The images in Fig. 2.2 form a periodic array,
which is effectively a diffraction grating. We note one small difference from a
typical diffraction situation: Due to the wire boundary conditions, the incident
modes are superpositions of two plane waves each, rather than a single inci-
dent plane wave. This difference is trivial, due to the linearity of Schrodinger’s
equation. When such modes are incident on the effective lattice of images, they
diffract: Plane waves (or superpositions of plane waves) striking the grating
scatter, at large distances, into sums of plane waves at the Bragg angles. The
diffracted spectral orders are evident as the quantized wavenumbers appearing
in the spectral form of the Green’s function. As the Green’s function for each
image scatterer is singular, evanescent waves appear in the Fresnel regime, near
the lattice. We examine these statements rigorously in Appendix B.

Numerics

While the method of images led quickly to the central results (2.27,2.33), these
results expressed in terms of image sums converge so slowly as to be impractical
for numerics. Although the spectral form (2.14) converges more rapidly than
the image series (2.18), its convergence is still not uniform, as the evanescent
modes include a logarithmic singularity.

In Appendix C, we use Kummer’s method to accelerate the convergence of
the Green’s function, casting it in the form (C.0.2) suitable for numerical work.
A side benefit of applying Kummer’s method is that we obtain a more rapidly
converging expression for Gr: In Appendix C, we show that the series (2.23) for
Gr (which is a Schlömilch series) resums to

Gr =
∞∑
m=1

(
1

ik
(m)
x

+
d

mπ

)
χ2
m(y0)

− 1
π

ln
[
kd

π
sin
(πy0

d

)]
+
i

2
− γ

π
(2.34)

where γ is the Euler-Mascheroni constant. We note that this expression is
considerably more complex than the expression (2.23) derived via the method of
images. In the image formalism, the expression for the renormalization constant
Gr has the intuitive form (2.23), because removing the contribution of the source
simply involves excluding the scatterer itself, while retaining the images. In
the spectral formalism, because the singularity is not explicit, its removal is
considerably less transparent.



2.3.4 Scattering Phenomena in Quantum Wires

In this subsection we define an effective cross section and optical theorem for the
confined impurity. As we have shifted from the image formalism (which applies
only to the hard wire) to the spectral one, where (2.14) applies generally, the
results presented in Section 2.3.4 apply to arbitrary waveguides, not only hard
wires.

2.3.4.1 The S Matrix

Since the wire is infinite, for calculating transmission/reflection at infinity, we
need consider only the open channels. Without loss of generality (due to trans-
lational invariance of the wire in the x direction), suppose the scatterer is at
x0 = 0. With incident mode n, normalized to unit flux, the wavefunction at
large distances from the scatterer is

ψ(x, y; 0, y0) =
e±ik

(n)
x x√
k

(n)
x

χn(y)−
∞∑
m=1

 iRs√
k

(n)
x k

(m)
x

×χn(y0)χm(y0)
eik

(m)
x |x|√
k

(m)
x

χm(y)

 (2.35)

from which we can read off a scattering matrix

S =

(
R T′

T R′

)
=

(
R I−R

I−R R

)
(2.36)

where the reflection and transmission coefficients are

Rmn = R′mn = − iRs√
k

(n)
x k

(m)
x

χn(y0)χm(y0) (2.37)

Tmn = T ′mn = δmn +Rmn (2.38)

One can show algebraically (or verify numerically) that

rank R = rank(T− I) = 1.
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2.3.4.2 Defining a Cross Section in the Wire

In this section, we define an effective scattering cross section for the wire. The
usual three-dimensional free space differential scattering cross section is

dσ

dΩ
=
dN(Ω)
NindΩ

(2.39)

where dN(Ω) is the number of particles per area scattered into the solid angle
dΩ, and Nin is the number of incident particles per unit area. Expressed in
terms of probability currents, the above relation becomes

dσ

dΩ
=
∫
jrr

2dΩ
jin

(2.40)

where ~j = Im(Ψ∗∇Ψ) is the probability current, jin is the incoming probability
current, and jr is the radial probability current. Integrating over solid angles,
we find that

σ =
∫ ∫

jrr
2dΩ

jin
dΩ (2.41)

The optical theorem in free space relates the forward scattering amplitude to
the cross section.

Here, we modify the above free space relations, in order to define a cross
section for our confined geometry. With incident mode φn(x, y), the scattering
wavefunction is

ψn(x, y)− φn(x, y) = − i√
k

(n)
x

∑
m

Rs√
k

(m)
x

χn(y0)χm(y0)

×e
ik(m)
x |x|√
k

(m)
x

χm(y) (2.42)

which yields a probability current in the x direction

jx =
|χn(y′)|2

k
(n)
x

∑
m,p

|Rs|2 1√
k

(n)
x k

(p)
x

χm(y0)χp(y0)

×ei(k
(m)
x −k(p)

x )|x|χm(y)χp(y). (2.43)

Integrated over y, the cross terms cancel, and this current yields a scattered flux∫ d

0

jxdy =
χ2
n(y0)

k
(n)
x

∑
m

|Rs|2χ
2
m(y0)

k
(m)
x

(2.44)



going in each direction. As our basis is normalized to unit flux, in our case,
the incident flux is simply 1. We define a differential cross section for the nth

incoming mode, similar to the free space differential cross section (2.41):

σn =
∫
dy
dσn
dy

(2.45)

=
∫
dy

∫
jxdy

jin
(2.46)

= |Rs|2dχ
2
n(y0)

k
(n)
x

∑
m

χ2
m(y0)

k
(m)
x

(2.47)

where we note the exact analogy between plane waves in our waveguide and
partial waves in free space. Note also that σn has the correct dimensions of
length.

In free space, the cross section of a spherically symmetric scatterer is inde-
pendent of the direction of the incident plane wave. In the waveguide, however,
the cross section depends on the incoming mode, because the waveguide breaks
spherical symmetry. We can define a total cross section as the average over
incoming directions,

σ̄ =
1

2N

N∑
n=−N

σn (2.48)

We note that σ̄ represents a sort of fraction of the incoming wavefunctions which
scatter. Flux conservation imposes the bound

0 ≤
N∑

n=−N
σn ≤ d. (2.49)

The maximal value of σ̄ will, therefore, be 1/2N , and its minimal value will be
0.

We had previously mentioned that rank(T− I) = rank R = 1. This reduced
rank indicates that, as in free space, a basis exists in which a single wavefunction
scatters, while the remaining 2N−1 do not. The quantity 2Nσ̄ thus tells us the
fraction of the flux of this scattering wavefunction, and should be between 0 and
1. Henceforth we will speak of σ ≡ 2Nσ̄/d as the cross section (as a fraction of



2.3. Scatterer in a Wire 19

the wire width). Our final cross section is thus

σ = |Rs|2
(

N∑
n=−N

χ2
n(y0)

k
(n)
x

)2

(2.50)

and satisfies
0 < σ < 1. (2.51)

We note that for m impurities in the wire, assuming there are N > m modes
available, rank(T − I) = rank R = m. By arguments analogous to the single
scatterer case, with m scatterers present, we could choose a basis where only m
wavefunctions would scatter, while the remaining N −m would be transmitted
without any perturbation.

2.3.4.3 Modified Optical Theorem in the Waveguide

The usual free space optical theorem involves the imaginary part of the for-
ward scattering amplitude. One can show that the free space optical theorem
constrains s via

(Ims)2 = −1
2
|s|2 . (2.52)

A similar relation holds in the wire, and as it turns out, flux conservation implies
that not every value of Rs is physically permissible. Unitarity of S implies that∑

m

|Rmn|2 + |Tmn|2 = 1. (2.53)

Using (2.37-2.38) in (2.53), after some algebra, we find

∑
m |Rmn|2 + δmn(1 + 2 Re Rmn) = 1, any n (2.54)

which requires that Rs satisfy the constraint

|Rs|2
∑
m

χ2
m(y0)

k
(m)
x

= −Im(Rs). (2.55)

We can express (2.55) as an optical theorem, like the one in free space. Define
the “forward scattering amplitude” to be the amplitude which scatters in the
direction of the incoming wave:

fn ≡ −
iRs
k

(n)
x

χn(y0). (2.56)



With this definition, our “optical theorem” in the wire becomes

Im(e−iπ/2fn) = χn(y0)σn (2.57)

which is very similar to the 2-D free space optical theorem,

Im
(
f(0)e−iπ/4

)
=

√
k

8π
σ (2.58)

where f(0) is the forward scattering amplitude. Combining (2.50) and (2.55)
allows us to define a cross section,

σ(k, a) = −
∑
n

χn(y0)2

k
(n)
x

Im(Rs) (2.59)

=
Im(Rs)2

|Rs|2
. (2.60)

2.3.4.4 Relationship between Cross Section and Conductance

We note that our cross section is trivially related to the conductance of the wire,
calculated as in the Landauer formalism [22] as G = 2e2

~ Tr T†T. Noting that
T = I-R, and letting N equal the number of open channels,

G ∝ Tr T†T.

= N + 2Re Tr R +
∑
m

∑
p

|Rmp|2 (2.61)

= N + 2Im (Rs)
∑
p

χ2
p(y0)

k
(p)
x

(2.62)

+
∑
p

1

k
(p)
x

χ2
p(y0)

∑
m

|s̃|2

k
(p)
x

χ2
m(y0)

= N − 2σ − Im (Rs)
∑
p

χ2
p(y0)

k
(p)
x

(2.63)

= N − σ (2.64)

where we have used (2.37), (2.55), and (2.59).
In this section, we have laid out the formalism which we shall use to examine

scattering in the wire. In Section 2.4, we use our formalism to examine how the
cross section and conductance of the confined scatterer vary as the physical
parameters of the wire change.
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Figure 2.4: Free space cross section (thick line) and cross section for confined
scatterer (thin line), vs. kd. The scatterer is in the center of the wire, at y0 =
0.5d. Its scattering length is a = 0.1d.

2.4 Results and Discussion: Confinement Induced

Scattering Phenomena

Confinement induced effects on transport, in particular “conductance dips” as
each new mode opens, have been observed experimentally [2] as well as in other
theoretical investigations [4, 6, 7, 20] of impurity scattering in quantum wires.
Changes in the transport due to motion of a single defect are studied in relation
to universal conductance fluctuations. [3] Theoretically, the observed phenom-
ena are generally explained via mode-mixing effects, [6] or loosely attributed to
multiple scattering from the walls. [20] In this section, we discuss some confine-
ment induced phenomena as we specifically observe them in our wire.

The first quantity we wish to examine is how the cross section of the confined
scatterer relates to the free space cross section of the identical scatterer, as a
function of energy. The cross section of a free space scatterer is

σf =
1
k
|s|2 . (2.65)

Fig. 2.4 shows that one feature resulting purely from confinement is the
appearance of sharp discontinuities in the cross section as new modes become
available; the effect is present only if the newly opened mode is nonzero at
the scatterer. To the left of each mode opening, the scatterer appears entirely



transparent, whereas to the right of the mode opening its cross section is the
full width of the wire. Another point to note is that, while the free space
cross section decreases monotonically with k, the cross section of the confined
impurity does not, and can be nonzero at arbitrarily high k.

2.4.1 Resonances

We wish to examine some of the features of the confined cross section in Fig.
2.4 in greater detail. In particular, we want to look at the resonances, and
understand the effect of varying the scatterer position. Fig. 2.5 shows how
the cross section and conductance vary as functions of energy, for three different
values of y0. We observe the general property that resonances in the cross section
appear as new transverse modes open (kd = nπ), unless the newly opened mode
is zero at the scatterer. We further observe that the resonances have a universal
structure: If a resonance exists at kd = nπ, then

lim
kd→nπ−

σ(k) = 0 (2.66)

lim
kd→nπ+

σ(k) = 1. (2.67)

As the scatterer position changes, the character, shape, and number of reso-
nances change also. In Fig. 2.5a), the scatterer is located at y0 = 0.05d, where
each of the modes is nonzero. Each resonance obeys (2.66-2.67). In Fig. 2.5c),
the scatterer position is y0 = 0.32d. Because χ3(0.32d) � 1, the resonance at
kd = 3π is much narrower than the others, and will in fact vanish if we move the
scatterer slightly to y0 = d/3. In Fig 2.5e), we observe such missing resonances–
with the scatterer in the precise center of the wire, all even modes are zero there,
and the resonances at kd = 2π, 4π, 6π, . . . have vanished.

Figs. 2.5b), 2.5d), and 2.5e) show the conductance for each scatterer po-
sition, which is related to the cross section by (2.64). Discontinuities such as
(2.66-2.67) in the cross section lead to a continuously varying conductance. The
impurity reduces the conductance by at most one stairstep. Comparing the
conductance with (heavy line) and without the impurity (thin line), we observe
that to the right of each mode opening, the conductance falls, generally to the
value of the next-lowest stairstep.

From Fig. 2.5, our observations are as follows: (1) Resonances occur for
values of k at which a new mode opens, unless the new mode is zero at the
scatterer. (2) The general structure of a resonance is that the scatterer becomes
transparent immediately before a mode opens, and that its cross section jumps
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Figure 2.5: Cross sections (a,c,e) and conductances (b,d,f) vs. the wavenumber,
k, for the scatterer at three different positions in the wire. The conductance is in
units of the conductance quantum, 2e2/~. The scatterer positions are y0 = 0.05d
(a, b), y0 = 0.32d (c, d), and y0 = 0.50d (e, f). The scattering length is
a = 0.1d. Resonances in the cross section appear as new transverse modes open
(kd = nπ). Discontinuities in the cross section lead to a continuously varying
conductance: the two quantities are related by (2.64). The impurity reduces
the conductance by at most one channel. Comparing the conductance with
(heavy line) and without the impurity (thin line), we observe that to the right
of each mode opening, the conductance falls, generally to the value of the next-
lowest stairstep. Several references [4,6,7,20] obtain slightly different results for
the conductance vs. wavenumber curve, in which σ = 1 just below the mode
opening. We attribute the discrepancy to differences in how the point scatterer
is modeled.



to one immediately after the mode has opened. (3) The shape and width of the
resonances depend on the scatterer position, y0. In Section 2.5, we shall prove
these statements, and explain them in terms of interference effects.

Although we have examined the case of a repulsive scatterer in Fig. 2.5,
our analytic and numerical results indicate that even for an attractive impurity
(a < 0) the conductance is reduced by a single unit immediately after the
subband opening kd = nπ, rather than just below it. Similar results about
the conductance reduction near the opening of each subband appear in other
theoretical investigations of quantum wires; we cite some representative works
[4,6,7,20]. One result [20] is for a scatterer in a rectangle, and therefore cannot
be exactly compared to ours. However, the remaining references [4, 6, 7] treat
the infinite wire, and show a slight difference from ours: In [4,7], which examine
only attractive impurities, the reduction in conductance appears slightly below
the subband opening. Ref. [6] examines both attractive and repulsive scatterers.
For repulsive scatterers, Ref. [6] presents results similar to our Fig. 2.5, while for
attractive scatterers the results of Ref. [6] resemble those in [4,7]. Because delta
functions in more than one dimension do not scatter, many different methods
exist of representing a point impurity in two dimensions. We have chosen to
use a t matrix representation as in Refs. [11,15,16], and the particular t matrix
we have chosen in (2.3) mimics the s wave scattering of a hard disk of radius a.
The references whose results differ from ours have used explicit limiting forms
of delta potentials. We attribute the slight difference in results to the different
forms and representations of the point impurity.

2.4.2 Between Resonances

We have observed that the scatterer position in the wire influences not only the
width and shape of the resonances, but can even cause a resonance to disappear.
Between resonances, we note the opposite phenomenon: The scatterer position
barely affects the cross section at all. As we vary the scattering length a, the
cross section behaves very similarly to the free space cross section (see Fig. 2.6).

Our general observations from the numerical results are the following: (1)
Scattering resonances occur where nonzero modes open. (2) The cross section
jumps from zero to d across a resonance. (3) The width and existence of a res-
onance is influenced by y0. (4) Away from resonances, the cross section behaves
like the free space cross section.
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Figure 2.6: (a) Cross section of the confined scatterer for kd = 12.5π (halfway
between having 12 and 13 modes open). On the horizontal axis, we vary the
effective scattering radius a from −0.1d to 0.1d. The vertical axis is y0, the
vertical position of the scatterer in the waveguide: y0 varies from the edge of
the wire (y0 = 0) to the middle of the wire (y0 = 0.5). In contrast to the case
of a resonance, between resonances, the cross section is almost identical to the
free space cross section σf , shown in (b); the arrow indicates two corresponding
maxima. The only effect of varying y0 is to introduce some small oscillations
due to interference effects. The plots continue in a similar manner to the left
and right.

2.5 Physical Phenomena Explained in Terms of

a Single Scattering Wave Function

We have shown that items 1-2 in our list of Section 2.2.2 are characteristics of
free space scattering which have analogs in the wire. We have yet to examine
whether item 3 has an analog as well. In this section, we show that in the
waveguide, as in free space, a basis exists in which only a single wavefunction
scatters. We write this basis explicitly, and show that the scattering of this
single wavefunction allows us to explain the confinement induced phenomena
shown in Figs. (2.4-2.6) simply, in terms of reflections from the scatterer and
its images.



2.5.1 Single Scattering Wavefunction and the Hall of Mir-

rors

In the basis of plane waves, the scatterer couples the channels so that, in general,
an incoming mode scatters into all the modes. However,

rank

[
S−

(
0 I
I 0

)]
= 1, (2.68)

which implies that a particular choice of basis exists in which only one of the
incoming wavefunctions scatters at all, and is decoupled from the other N − 1
basis functions. This wavefunction is the analog of the s wave in free space.

Another way of seeing that only one wavefunction scatters is by the following
argument: For a given energy, N channels are open. Any incoming wavefunction
is a linear combination of the N basis functions

φ(n)(x, y) =
e±ik

(n)
x x√
k

(n)
x

χn(y), (2.69)

(we require only the left- or right-moving set). Any linear combination

N∑
n=1

cnφ
(n)(x, y) (2.70)

of the N basis functions (2.69) which is nonzero at the scatterer will satisfy

N∑
n=1

cnφ
(n)(x0, y0) 6= 0. (2.71)

Equivalently, define an 1 × N matrix W such that Wn = φ(n)(x0, y0) and a
vector of coefficients ~c = [c1, . . . cN ]. Then, for any scattering wavefunction, the
cn will satisfy

W~c 6= ~0 (2.72)

As W is a rank 1 matrix, only one solution exists. That solution is simply
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~c ∈ Nul(W)⊥ = Row(W) = W†. That is, the single scattering wavefunction is

φ

s (x, y) =

N∑
n=1

(
φ(n)(x0, y0)

)∗
φ(n)(x, y) (2.73)

=
N∑
n=1

1

k
(n)
x

χn(y0)χn(y)e±ik
(n)
x (x−x0) (2.74)

where the choice of sign determines whether the incoming wave is right or left-
moving. Suppose we take a linear combination of the two so the scattering
wavefunction is symmetric in x. The scattering wavefunction becomes

φs(x, y) =
N∑
n=1

1

k
(n)
x

χn(y)χn(y0) cos
[
k(n)
x (x− x0)

]
(2.75)

(the other linear combination doesn’t scatter). By comparison with (2.14), we
recognize the above form of the scattering wavefunction as

φs(x, y) = −ImGw(x, y;x0, y0; k). (2.76)

Note that all the definitions in this section, and in particular (2.76), are indepen-
dent of the specific form of χn(y), and thus apply to arbitrary guides, not only to
the hard wire. As we shall discuss later, (2.76) is particularly important because
it shows that for an arbitrary guide, we can obtain the scattering wavefunction
entirely from the Green’s function, which we can approximate semiclassically.

We now return to the specific case of the hard wire, and try to understand
the scattering wavefunction physically. From (2.18), an alternate form of the
Green’s function is

Gw(~r, ~r0, k) = − i
2

∞∑
n=−∞

(−1)nH0(k |~r − ~rn|) (2.77)

where the ~rn are the image positions. Combining (2.76) and (2.77), we find an
alternate expression for the scattering wavefunction:

φs(x, y) =
1
2

∞∑
n=−∞

(−1)nJ0(k |~r − ~r0|). (2.78)

Eq. (2.78) shows that the analog of the free space s wave in the hard wire is,
as we might have expected, simply the free space s wave, plus an infinite series
of images–a “hall of mirrors s wave.” We can complete the analogy between



free space and our wire by expressing the N − 1 unscattered wavefunctions
in terms of a “mirrors” basis. We do so by including higher order mirrored
waves as in Table 2.1. The mirroring, and the signs assigned to each image, are
somewhat subtle: Only those combinations of free space orbitals which satisfy
the boundary conditions, but are also zero at the scatterer, will not scatter.
We note that the basis in Table 2.1 is not an orthogonal one; inner products of
an p wave centered on one image and a d wave centered on another image, for
example, do not vanish, nor do the various such cross-terms cancel each other.
However the important point is that the higher partial waves we have defined
are all orthogonal to the mirror s wave: Higher mirrored partial waves do not
scatter, whereas the mirror s wave does.

We note that the image sums in Table 2.1 converge slowly and are unsuitable
for numerical purposes. However, we have the plane wave expansion (2.75) for
the s wave, as well as the analogous expansion

φ+
s (~r) =

1
2

∞∑
n=−∞

J0(k |~r − ~rn|) (2.79)

=
2
d

N∑
n=1

1

k
(n)
x

cos
(nπy

d

)
cos
(nπy0

d

)
× cos

[
k(n)
x (x− x0)

]
(2.80)

for the s wave plus positive images. We can apply the raising operator

L̂+ ≡
1
k

(∂x + i∂y) (2.81)

to these plane wave expansions to obtain plane wave expansions for the higher
partial waves. For example, we can obtain plane wave expansions of the waves
in Table 2.1 as

φpx(~r) = Re
[
L̂+φs(~r)

]
= 1

k∂xφs(~r)

φdxy (~r) = Im
[
L̂2

+φ
+
s (~r)

]
= 2

k2 ∂xyφ
+
s (~r)

φfx3−3xy2
(~r) = Re

[
L̂3

+φs(~r)
]

= 1
k3

(
∂3
x − 3∂x∂2

y

)
φs(~r),

and we could proceed similarly to obtain higher partial waves.
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2.5.2 Interference Effects

We might expect that the cross section is related to the fraction of the single
scattering wavefunction which actually scatters, and we might thus expect the
cross section to be proportional to the amplitude of the mirror wavefunction
at the scatterer. However, some numerics reveal that the mirror wavefunction
alone is insufficient to fully describe the scattering. From (2.50) and (2.75), we
find

σ = |Rs|2 φs(~r0)2 (2.82)

=
∣∣∣sφ̃s(~r0)

∣∣∣2 (2.83)

meaning that the relevant quantity is the renormalized mirror wavefunction,
and that its value at the scatterer alone explains all the scattering phenomena.
Eq. (2.83) is again independent of the form of the waveguide.

We have already discussed how renormalization of the scattering wavefunc-
tion arises from interference between all possible bounces off images. The im-
plication of (2.83) is that the value of the resulting interference pattern at the
location of the scatterer determines the cross section: At configurations (wire
widths, incident wavenumbers, etc.) for which this interference is destructive at
the scatterer, the scatterer is transparent. If the system is configured so that
the bounces interfere constructively at the scatterer, a resonance results.

Semiclassical Approximations for General Wires

We wish to highlight another important point, which is that combining (2.83)
with (2.33) and (2.76), we find that

σ = lim
~r→~r0

{∣∣∣∣ sImGw(~r, ~r0)
1− s [Gw(~r, ~r0)−G0(~r, ~r0)]

∣∣∣∣2
}
. (2.84)

The significance of (2.84), which applies to an arbitrary wire, is that the cross
section is fully determined by the Green’s function of the empty guide. This
relation is important because the Green’s function is a quantity which we can
approximate semiclassically. Substituting the semiclassical Green’s function into
(2.84) will give us a semiclassical approximation to the cross section. Semiclas-
sical methods may be of use in determining the transport properties of guid-
ing potentials which are more complicated than the hard wire, and thus not
amenable to exact quantum treatment.
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2.5.3 Scattering Resonances and Conductance Reduction

In Figs. 2.4-2.5, we observed a reduction in the conductance, which are similar
(although not identical) to the conductance dips observed in other theoretical
investigations. [4,6,7,20] Using our formalism, we can understand the resonances
and conductance dips of Figs. 2.4-2.5 simply, in terms of interference between
different paths. Again the results of this section do not depend on the spe-
cific form of the transverse modes χn(y), and consequently apply to a general
waveguide.

As we showed in (2.32), the renormalized mirror wavefunction contains con-
tributions that have propagated from each of the image scatterers. We are
interested in the behavior of a cross section when a mode is about to open.
The mirror wavefunction involves only open channels, and is thus discontinuous
across a mode opening. Using (2.75), we can examine the behavior of the mir-
ror wavefunction near kd = Nπ, where the N th mode opens. Suppose that the
newly opened mode is nonzero at the scatterer, χN (y0) 6= 0. On the left of the
mode opening,

lim
ε→0

φs

(
~r0; k =

Nπ − ε
d

)
=

d

π

N−1∑
n=1

χ2
n(y0)√
N2 − n2

(2.85)

is finite. Immediately after the mode opening,

lim
ε→0

φs

(
~r0; k =

Nπ + ε

d

)
=

d

π

χ2
N (y0)√
2Nε

(2.86)

diverges as ε−1/2. That is, the mirror wavefunction is always finite immediately
before a nonzero mode opens, and diverges afterwards. The value of χ2

N (y0)
determines the width of the resonance (and the lifetime of the corresponding
quasibound state).

However, while the limiting behavior of the mirror wavefunction influences
the shape of the resonances, it does not fully describe their shape. As we
discussed, the general structure of a resonance is that σ drops to zero just be-
fore the mode opens; see e.g. Fig. 2.5. Clearly the incoming wavefunction,
which includes only modes which are already open, cannot explain this trans-
parency. The renormalization factor due to the wire, however, includes all

modes, both evanescent and propagating–and unlike the incoming mirror wave-
function, varies continuously across the mode opening. Using the expression



(C.0.4) for Gr, we find that

lim
ε→0

Gr

(
k =

Nπ − ε
d

)
= − d

π

χ2
N (y0)√
2Nε

(2.87)

lim
ε→0

Gr

(
k =

Nπ + ε

d

)
= − id

π

χ2
N (y0)√
2Nε

(2.88)

generally. Combining (2.28) with the limits (2.85-2.88), and using (2.83), we
can show that

lim
ε→0

σ

(
k =

Nπ

d
− ε
)

=

2Nε

∣∣∣∣∣
N−1∑
n=1

[χn(y0)/χN (y0)]2√
N2 − n2

∣∣∣∣∣
2

. (2.89)

The value of χN (y0) controls the width and structure of the resonance. Exam-
ining the right side of the resonance,

lim
ε→0

σ

(
k =

Nπ

d
+ ε

)
= lim

ε→0

∣∣∣∣ s

1− sGr

∣∣∣∣2 φ2
s(~r0) (2.90)

≈ φ2
s(~r0)
|Gr|2

(2.91)

= 1

under the assumption that |sGr| � 1. An important point to note is that
when |Gr| → ∞, as it does at a resonance, the free space properties of the
scatterer have little effect on the cross section (see for example (2.90)), and so
the structure of resonances is universal.

Phase Shift and Ramsauer-Townsend Effect

We would like to note, in passing, that the transparency of the scatterer at
certain energies is reminiscent of the Ramsauer-Townsend effect in free space.
In free space, we define the s wave phase shift δ0 of an s wave scatterer by

ψ(~r) = φ(~r0) +
e2iδ0 − 1

2
H

(1)
0 (k |~r − ~r0|), (2.92)

Let us define it in the confined scatterer as the phase shift of each s wave
generated from the source and the images, when the incident wavefunction is
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our mirror s wave:

ψ(~r) = φs(~r) +
∞∑

n=−∞

e2iδ0 − 1
2

(2.93)

×(−1)nH(1)
0 (k |~r − ~rn|)

Comparing to the form (2.26) of the Lippmann-Schwinger equation, we find that

e2iδ0 = 1− isφ̃s(~r0). (2.94)

Applying (2.83), we find that

σ =
1
4

∣∣1− e2iδ0
∣∣2 (2.95)

so that σ = 0 when δ0 = 0, π and σ = 1 when δ0 = π
2 ,

3π
2 . As in the free space

Ramsauer Townsend effect, the cross section vanishes when our analog of the s
wave phase shift does.

In conclusion, we can make the following general statements about the cross
section:

1. If χN (y0) 6= 0, the cross section will be discontinuous at kd = Nπ. The
limit on the left hand side will be finite, and depend the value of χN (y0).
The limit on the right hand side will be unity.

2. The width and shape of the resonances in item (2) will depend on χN (y0).
Physically this means that one can tune the resonances by sliding the scat-
terer up and down in the wire, or by changing the nature of the confining
potential.

2.5.4 Semiclassical Interpretation of Resonances

Having explored the structure of the resonances, we wish to understand them
semiclassically, from an interference point of view. We again turn to the hard
wire for insight into the scattering processes. The scattering cross section de-
pends only on a single quantity, the renormalized mirror wavefunction. We have
previously expressed this renormalized mirror wavefunction as a sum over the
different paths ending on the scatterer (2.32). When the interference between
these paths is maximally constructive, the cross section is maximal. When it is
maximally destructive, the cross section vanishes.



In order to make this interference clearer, we shall make a simple approx-
imation. Consider the most straightforward case, with the scatterer in the
center of the wire (the case we examined in Fig. 2.4). The image positions are
~rn = (0, nd). In the Green’s function (2.18), we replace each Hankel function by
its asymptotic form, which is equivalent to making a semiclassical approxima-
tion. This yields an approximate Green’s function

Gw(~r, ~r0) =
1√
2π
e5πi/4

∞∑
n=−∞

1√
k |~r − ~rn|

(2.96)

×ei(k|~r−~rn|−nπ).

The contribution from each image carries a phase related to the path length from
the image to the observation point, as well as a Maslov index einπ describing
the sign change after n reflections from the wire walls. In the limit that ~r → ~r0,
we see that the contribution propagating to the scatterer from the nth image
has relative phase ei(kd−π)n. For values of k such that

kd = (2p− 1)π, p integer, (2.97)

all the scattered wavelets thus interfere constructively. Comparing with Fig. 2.4,
we see that this constructive interference coincides precisely with the resonances
which occur as new modes open.

To fully explain the structure of the resonances, and understand the scat-
terer’s transparency just before modes open, we would have to consider the
effects of renormalization in this approximation. We shall not pursue the semi-
classical limit further here, as we have already examined the exact case in great
detail in Section 2.5.3. However, purely from this simple semiclassical argu-
ment, we can see that the resonances induced by the wire are indeed related to
interference effects between different reflections.

2.6 Conclusions and Future Directions

Combining the method of images with the idea of a single scattering wave-
function, we have developed a formalism with which to treat scattering from a
single impurity confined in a quantum guide. We find many similarities between
scattering in the confined geometry and scattering in free space: We have de-
fined meaningful analogs of the free space cross section, optical theorem, partial
waves, and Ramsauer-Townsend effect. Although the hard guide is particularly
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useful for insight, many of our results apply to other types of waveguides also.
We have examined the transport properties of a confined scatterer, making

several general observations about the existence, locations, and and characters
of the resonances. Additionally, we have outlined a method for approximat-
ing the cross section and conductance semiclassically, for arbitrary guides. We
have derived an effective optical theorem for general quantum wire potentials.
Using the fact that a confined target is rank one, we have described the trans-
port properties of the wire entirely in terms of a single scattering wavefunction,
renormalized by reflections from the confining potential. Our central result is
that the cross section of a confined impurity is

σ =
∣∣∣sφ̃s (~r0)

∣∣∣2 , (2.98)

where φ̃s (~r) is the renormalized single scattering wavefunction, which includes
interference effects due to reflections from the waveguide walls.

Despite the common use of the hard-walled guide as a theoretical model for
2DEG quantum wires, [4–6,9] actual confining potentials for both atom waveg-
uides as well as 2DEG quantum wires tend to be soft or even parabolic–whereas
in nanotube quantum wires, the relevant boundary conditions are periodic (the
periodic boundary case is also exactly solvable via the method of images, al-
though we have not presented the derivation here). While the hard wall itself
is not the best model for 2DEGs, it is the ideal system in which to examine
how effects like conductance reduction, which are independent of the confining
potential and occur in more realistic geometries, arise from simple reflection and
interference phenomena. The effects of multiple scattering from the impurity
are in fact very similar for general confining potentials (see e.g. the renormalized
t matrix formalism) [1].

A second limitation of this work includes the inadequacy of the s wave scat-
terer model at high energies, and in particular at energies which are sometimes
relevant when imaging electron flow. In Section 4.5 we extend our formalism to
treat higher partial waves. Another possible extension of this work could be to
examine the transport properties of many scatterers in the wire; for example,
explicitly explaining the transition from ballistic to diffusive transport in terms
of interference between multiple mirror wavefunctions.



Chapter 3

Scattering and Guiding by

Atomic Walls

In this chapter, we propose using an array of attractive scatterers to guide matter
waves. We begin by developing a multiple scattering formalism to describe the
scattering of scalar waves from quasi-1D periodic and near-periodic gratings
constructed from point scatterers, and embedded in 2D. Such gratings can be
constructed from individual atoms, for example via the same techniques used to
build “quantum corrals.” We use our analytic results to motivate the use of the
array of scatterers as a waveguide. We conclude with a numerical demonstration
that a finite array of scatterers can behave like an effective light pipe for scalar
waves, guiding a beam focused on one end of the array to the other end.

3.1 Introduction

In this chapter, we examine the possibility of guiding matter waves along a
single row of atoms, analogous to a light wave being guided by a fiber optic.
Arrays of scatterers frequently behave as waveguides. For example, light can be
guided via scattering along arrays of spherical metal particles [23–25]. Guiding
by discrete arrays also occurs in photonic crystals and waveguides, extensive
investigations of which have been spearheaded by Joannopoulous (see e.g. [26]).

To address the possibility of guiding with a wall of atoms, we develop in
Section 3.3 a general theory for the scattering of scalar waves from quasi-1D
periodic gratings of point scatterers, embedded in 2D. Because of the period-
icity, characteristics of solid state systems appear, including Bloch waves and

36
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band structure. However, because the grating is periodic only in one direc-
tion, and finite in the other, Bloch waves coexist with scattering phenomena:
Transmission coefficients, reflection coefficients, and resonances are present, in
addition to conduction along the array. Although our setup is an unusual one,
many regimes and characteristics which these gratings exhibit are clear analogs
of physical phenomena in more conventional waveguides, which can be treated
by continuum theory.

A possible application of the ideas in this chapter is to chains of atoms
adsorbed on metallic surfaces: Single chains of Au atoms have, for example,
been deposited on NiAl(110) [27, 28] as well as Si(553) [29]. Standing wave
patterns in the differential conductance of similar patterned atom systems have
been successfully modeled via Foldy’s multiple scattering theory [18], where
the individual scatterers were taken to be ideal s wave absorbers [30–32]. Our
formalism is not specfically designed to model atoms confined in optical lattices.
However, such a system also forms a grating, and certain aspects of the physics
are similar to our setup (for example, visible light can Bragg diffract from Cs
atoms confined in optical lattices [33]). Confined atoms could, thus, conceivably
be used to guide as well.

We begin, in Section 3.2, with a brief review of Foldy’s method. In Section
3.3, we apply Foldy’s method to the general periodic array of scatterers. We dis-
cuss diffraction, transmission resonances, and other phenomena which exist for
a general grating, continuing in Section 3.4 to examine quasibound and bound
states which conduct along the grating. In Section 3.5 we apply the general
results of Section 3.3 to the simplest periodic system, a single wall of scatterers.
We calculate the band structure of the wall and show that it is possible for con-
ducting states to exist at positive energies, permitting injection into these states
from the outside. Finally, in Section 3.6, we numerically demonstrate guiding
by finite, semiinfinite, and gently curved chains of attractive scatterers.

3.2 Background: Foldy’s Method

To model multiple scattering, we make extensive use of Foldy’s method, origi-
nally presented in [18]. Foldy’s method is a general model for multiple scatter-
ing of scalar waves from isotropic point scatterers. In addition to successfully
modeling transport in quantum corrals [31, 32], Foldy’s method (with various
boundary conditions) has been applied to model a wide range of systems includ-
ing acoustic scatterers [34], cold neutrons [35], and screens of bubbles [36]. We
review the method briefly in this section.



Consider a wave φ(~r) incident on a collection of N identical point scatterers
at positions {~r1, . . . , ~rN}, where ~rn = (xn, yn). Applying the t matrix formalism
[37], we characterize a single scatterer at ~ri by its t matrix,

t = s(k) |~ri〉〈~ri|

where s(k) is a function of the wavenumber, k =
√

2mE/~. We choose the
functional form of s(k) to simulate the scatterer of interest, under the constraint
that s(k) must satisfy the optical theorem

−2~
m

2

Ims(k) = |s(k)|2 . (3.1)

In the t matrix formalism, the Lippmann-Schwinger equation for multiple scat-
tering is

ψ(~r) = φ(~r) + s(k)
N∑
i=1

ψi(~ri)G0(~r, ~ri) (3.2)

where

G0(~r, ~r0) =
2m
~2

[
− i

4
H0(k |~r − ~r0|)

]
is the 2D free-space Green’s function satisfying

(~∇2 + k2)G0(~r, ~r0) =
2m
~2

δ(2)(~r, ~r0),

and the ψi(~ri) are defined recursively as

ψi(~ri) = φ(~ri) + s(k)
N∑
j=1

j 6=i

ψj(~rj)G0(~ri, ~rj). (3.3)

The ψi(~ri) are effective incoming wavefunctions at each scatterer: ψi(~ri) is the
amplitude incident on the ith scatterer after scattering from each of the other
scatterers. The ψi(~ri) exclude the singular self-interaction of the ith scatterer.
In the remainder of this chapter, we set ~ = m = 1.

Defining two N x 1 column vectors, ~φ and ~ψ whose ith elements are given
by ~φi ≡ φ(~ri) and ~ψi ≡ ψ(~ri) respectively, the Lippmann-Schwinger equation
can be written as a simple matrix equation by inverting (3.2-3.3) to yield

~ψ = M−1~φ (3.4)
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where
M ≡ 1− sG

and the matrix G, defined by

Gij ≡

{
0 i = j

G0(~ri, ~rj) i 6= j,
(3.5)

excludes the singular self-interactions of each scatterer with itself.
Substituting the values of ~ψi from (3.4) into (3.2) yields an expression for

the scattered wavefunction:

ψ(~r) = φ(~r) + s

N∑
i=1

G0(~r, ~ri)
(
M−1~φ

)
i
. (3.6)

3.3 Multiple Scattering From General Periodic

Structures: Bloch Waves

We discussed in Section 4.5.1 how a lattice which is infinite in one direction,
and finite in the other, combines the ideas of Bloch waves from solid state
systems with the phenomena of reflection, transmission, and resonance typical
to scattering problems. The system can thus be approached from multiple points
of view. One approach might be to begin with the standard 3D solid state plane
wave methods, which yield Bloch waves and band structure, and generalize
those methods to the 2D case. We choose, instead, to apply multiple scattering
theory to the array. The drawback of the multiple scattering approach is that it
is somewhat more involved: however, Foldy’s method yields information about
individual scattering events within a unit cell and between unit cells, and it also
generalizes more easily to the introduction of disorder into the lattice.

In this section, we apply Foldy’s method from Section 3.2 to solve the
Lippmann-Schwinger equation for a plane wave scattering from a general, infi-
nite periodic array of clusters of point scatterers with a Bravais lattice spanned
by dŷ (Fig. 3.1). Applying (3.4) directly, the multiple scattering solution would
seem to require inversion of a biinfinite matrix. However, in this section we
reduce the solution to inversion of the N ×N matrix (where N is the number of
scatterers per unit cell), and demonstrate how Bloch waves arise from multiple
scattering theory. The resulting Lippmann-Schwinger equation resembles (3.4-
3.5), but with an effective scattering strength s̃ and an effective Green’s matrix
G̃ which account for multiple scattering between unit cells. The renormaliza-



tion and interference effects in a periodic grating are very similar to the effects
encountered when a single point scatterer is placed in a confined geometry (see
e.g. [38]). We discuss this point in detail in Section 3.5.

Our approach turns out to be related to the Korringa-Kohn-Rostoker (KKR)
method [39, 40], with the variation that we have represented our scatterers by
t matrices and have begun with an s wave approximation. A related approach
was applied previously to study scattering from two-dimensional periodic slabs
of scatterers embedded in three dimensions [41].

3.3.1 Multiple Scattering from a Periodic Grating

Figure 3.1: Plane wave incident on array with Bravais vector dŷ. Unit cell is
indexed by q, individual scatterer by n.

Denote by ~r
(q)
n the position of the nth of N scatterers in unit cell q. We

shall further suppose that all the scatterers in a unit cell are identical, with
strength s, although the arguments in this section can easily be generalized
for arbitrary scattering strengths. Applying Foldy’s method, we can write the
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Lippmann-Schwinger equation as

ψ(~r) = φ(~r) + s

∞∑
q=−∞

N∑
n=1

G0(~r, ~r(q)
n )ψ(q)

n (~r(q)
n ) (3.7)

ψ(q)
n (~r(q)

n ) = φ(~r(q)
n ) + s

∞∑
p=−∞

N∑
m=1

(m,p)6=(n,q)

G0(~r(p)
m , ~r(q)

n )ψ(p)
m (~r(p)

m ) (3.8)

where

G0(kr) = − i
2
H0(kr) (3.9)

is the two-dimensional free space Green’s function (~ = m = 1). Once again, if
the effective incident wavefunction amplitudes at the scatterers, ψ(q)

n

(
~r

(q)
n

)
in

(3.8), are known, the full wave function is determined using (3.7).
It is tedious, but straightforward to recursively sum and reindex (3.8) to

show that for a translationally invariant incident wave,

φ(~r) = ei
~k·~r

the solutions to (3.8) are also translationally invariant:

ψ(q)
n (~r(q)

n ) = eikyqdψ(0)
n (~r(0)

n ). (3.10)

Let us focus on the N scatterers in the unit cell indexed by q = 0. Using (3.10)
on the right hand side of (3.8), evaluated for q = 0, we obtain

ψ(0)
n (~r(0)

n ) = φ(~r(0)
n ) + s

∞∑
p=−∞

N∑
m=1

(m,p)6=(n,0)

G0(~r(p)
m , ~r(0)

n )eikypdψ(0)
m (~r(0)

m ) (3.11)

We wish to separate off the m = n term, which corresponds to multiple scatter-
ing between each scatterer and its periodic counterparts in other unit cells. It
is in this term that we must exclude the self interaction, which corresponds to



m = n and p = 0. Breaking up the sum, we find

ψ(0)
n (~r(0)

n ) = φ(~r(0)
n ) + s

∞∑
p=−∞
p 6=0

G0(k |p| d)eikypdψ(0)
n (~r(0)

n )

+s
N∑
m=1
m 6=n

[ ∞∑
p=−∞

G0(~r(0)
m + pdŷ, ~r(0)

n )eikypd
]
ψ(0)
m (~r(0)

m )

= φ(~r(0)
n ) + sGrψ

(0)
n (~r(0)

n ) + s

N∑
m=1

G̃mnψ
(0)
m (~r(0)

m )

where we have defined two quantities, a scalar quantity independent of the
configuration of the unit cell,

Gr ≡ s
∞∑

p=−∞
p 6=0

G0(k |p| d)eikypd (3.12)

and an N ×N matrix with entries

G̃mn =

{
0 m = n∑∞

p=−∞G0(~r(0)
m + pdŷ, ~r

(0)
n )eikypd. m 6= n

(3.13)

Defining the lattice sum

G(~r) =
∞∑

p=−∞
G0(~r, pdŷ)eikypd (3.14)

we can rewrite (3.13) as

G̃mn =

{
0 m = n

G(~r(0)
n − ~r(0)

m ) m 6= n
(3.15)

and then replaceG(~r) in (3.14, 3.15) with the more rapidly converging expression
(D.1.3), derived in Appendix D.
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Defining vectors of wavelets

~φ(0) =


φ

(0)
1 (~r(0)

1 )
φ

(0)
2 (~r(0)

2 )
...

φ
(0)
N (~r(0)

N )

 ,

~ψ(0) =


ψ

(0)
1 (~r(0)

1 )
ψ

(0)
2 (~r(0)

2 )
...

ψ
(0)
N (~r(0)

N )


we can solve for the wavelets in the q = 0 unit cell:

~ψ(0) =
1

1− sGr
M̃−1~φ(0) (3.16)

where we have defined
M̃ = I− s̃G̃. (3.17)

and

s̃ =
s

1− sGr
(3.18)

The remaining wavelets are then determined by (3.10):

~ψ(q) = eikyqd ~ψ(0). (3.19)

The full wavefunction is then given by substituting (3.16) and (3.19) in (3.7):

ψ(~r) = φ(~r) + s̃

∞∑
p=−∞

N∑
n=1

G0(~r, ~r(p)
n )eikypd

(
M̃−1~φ(0)

)
n

(3.20)

= φ(~r) + s̃

N∑
n=1

(
M̃−1~φ(0)

)
n

∞∑
p=−∞

G0(~r − ~r(0)
n , pdŷ)eikypd (3.21)

= φ(~r) + s̃

N∑
n=1

G(~r − ~r(0)
n )

(
M̃−1~φ(0)

)
n

(3.22)

We note the similarity between (3.22) and (3.6): We can go from a single unit cell
to a repeating array simply by replacing the t matrix s(k) with its renormalized



version s̃(~k), and the free space Green’s function G0(~r; k) with the effective
Green’s function G(~r; k). The wavefunction (3.20) is a Bloch wave:

ψ(~r + dŷ) = eikydψ(~r)

and the mapping from a single unit cell to an infinite array of unit cells is
essentially a consequence of Bloch’s theorem.

In this section, we have derived the scattered wavefunction when a plane
wave is incident on a periodic grating. We have shown how Bloch waves emerge
from Foldy’s multiple scattering formalism, and that multiple scattering between
unit cells gives rise to a renormalized scattering strength and effective Green’s
function. We now use our formalism to understand the transport phenomena
which result when a plane wave is incident on a periodic grating, keeping in
mind that our grating is also a quasi-1D “wire” which can transport waves along
its axis.

3.3.2 Diffraction

The results in (3.14) are expressed as a superposition of spherical waves. In
order to study diffraction, we choose to express the results in a basis of plane
and evanescent waves. Using the lattice sums calculated in (D.1.3), we find that
an alternate expression for (3.14) is

G(~r − ~r(0)
n ) = − i

d
eiky(y−y(0)

n )
∞∑

q=−∞

1

k
(q)
x

eik
(q)
x |x−x(0)

n |e−
2iqπ
d (y−y(0)

n ) (3.23)

where

k(q)
y ≡ ky −

2qπ
d

(3.24)

k(q)
x ≡

√
k2 −

(
k

(q)
y

)2

. (3.25)

Consider an incident beam

φ(~r) =
1√
k

(0)
x

ei
~k·~r

where we have normalized the incident beam to have unit flux on the unit cell
of the array in order for unitarity of the S matrix to follow directly from current
conservation.
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Substituting (3.23) into (3.22) yields a plane plus evanescent wave expansion
for the scattered wave:

ψ(~r) =
ei
~k0·~r√
k

(0)
x

− is̃
d

∞∑
q=−∞

N∑
n=1

(
M̃−1~φ(0)

)
n

1

k
(q)
x

eik
(q)
x |x−x(0)

n |eik
(q)
y (y−y(0)

n ). (3.26)

Eq. (3.26) is, in essence, Bragg diffraction: in the near field of the array, the
wave contains an evanescent part, whereas in the far field the solution consists
of diffracted plane waves propagating at the Bragg angles (3.24-3.25). The val-
ues of q for which k

(q)
x is real correspond to diffracted plane waves, while the

remaining values of q correspond to evanescent waves. The set Q of open chan-
nels, corresponding to diffracted plane waves, is defined by Q = [Qmin, Qmax]
where

Qmin =
⌈

(−k + ky)d
2π

⌉
(3.27)

Qmax =
⌊

(k + ky)d
2π

⌋
. (3.28)

Only these open channels contribute in the far field. Note that for off normal
incidence, Qmin 6= −Qmax.

In the far field, defined by |x| � |xn| for all n, we have the transmitted and
reflected wavefunctions

ψr(~r) =
∑
q∈Q

Rq
1√
k

(q)
x

e−i
~k(q)
x x+ik(q)

y y

ψt(~r) =
∑
q∈Q

Tq
1√
k

(q)
x

ei
~k(q)
x x+ik(q)

y y

where we can read off from (3.26) that

Rq = − is̃
d
× 1√

k
(q)
x

N∑
n=1

(M̃−1~φ(0))neik
(q)
x |x(0)

n |e−ik
(q)
y y(0)

n . (3.29)

Tq = δq −
is̃

d
× 1√

k
(q)
x

N∑
n=1

(M̃−1~φ(0))ne−ik
(q)
x |x(0)

n |e−ik
(q)
y y(0)

n . (3.30)



We can define total reflection and transmission probabilities for the wall as

R =
∑
q∈Q
|Rq|2 (3.31)

T =
∑
q∈Q
|Tq|2 . (3.32)

The value of s̃ is constrained by combining (3.31-3.32) with the unitarity re-
quirement R+T = 1. This constraint is an analog of an optical theorem for the
grating.

3.4 Mechanisms for Guiding: Quasibound and

Bound States

Our goal in this chapter is to understand how waves can be guided along the
grating. In this section, we discuss two mechanisms for conduction along the
grating. Section 3.4.1 discusses quasibound states which arise purely due to
the array’s periodicity. Quasibound states have a finite lifetime; conduction in
these states is limited by wave amplitude shedding off the periodic array. Similar
quasibound states appear in a number of periodic systems ranging from periodic
ocean coastlines to acoustics [42,43]. The difference between a grating of atoms
and the other periodic systems we have mentioned is that the individual atoms
in a grating can possess bound states. These bound states can potentially give
rise to bands of states which, in contrast to the quasibound states, are truly
conducting along the array. In Section 3.4.2 we outline the criteria for the
existence of these states. We shall examine both the quasibound and bound
states, and their role in guiding, in more detail in Section 3.5. A third possible
mechanism of guiding which we do not examine in this chapter is total internal
reflection; this requires a thick array of scatterers which can behave like an
effective medium.

Guided waves which propagate along periodic structures are termed Rayleigh-
Bloch surface waves, or trapped waves, and are discussed in [44, 45]. These
trapped waves are evanescent in the direction transverse to the array: They
conduct along the array, but they do not carry energy away from the array.
Trapped waves have been examined in a variety of physical contexts, includ-
ing electromagnetics, acoustics, water waves, and edge waves along periodic
coastlines [42]. In acoustics, trapped modes have become known as “Parker res-
onances,” and can be excited by vortex shedding when air flows parallel to a set
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of equally spaced flat plates [43].

3.4.1 Trapped Waves and Quasibound States

From (3.26), resonances occur when k(q)
x → 0, i.e., whenever one of the diffracted

beams becomes parallel to the array: A similar process in atom-surface scat-
tering is known as selective adsorption [46]. These threshold resonances are
purely due to the periodicity of the array, and their existence does not depend
on the scatterer configuration within the unit cell. From (3.25), a diffracted
beam becomes parallel to the array when k → k

(q)
y ± ε, and the lattice sum

(D.2.7) yields

lim
k=k

(q)
y ±ε

Gr = − i
d

1√
±2k(q)

y ε

. (3.33)

From (3.18) and (3.33), we find that

lim
k=k

(q)
y ±ε

s̃ =
1
Gr

(3.34)

From (3.34), the dependence of s̃ on the bare t matrix s(k) cancels. The thresh-
old resonances are thus kinematical rather than dynamical: The resonance en-
ergies are independent not only of the configuration of each unit cell, but also of
the properties of the individual scatterers. The shape of each resonance, how-
ever, does depend on the types of scatterers and their arrangement in a unit
cell.

Near these resonances, the scattered wave travels along the y axis:

lim
k=k

(q)
y −ε

ψ(~r) = ei
~k·~r +

N∑
n=1

(
M̃−1~φ(0)

)
n

(3.35)

×e−
q

2k
(q)
y ε|x−x(0)

n |eik
(q)
y (y−y(0)

n ) + O(ε1/2)

lim
k=k

(q)
y +ε

ψ(~r) = ei
~k·~r +

N∑
n=1

(
M̃−1~φ(0)

)
n

(3.36)

×ei
q

2k
(q)
y ε|x−x(0)

n |eik
(q)
y (y−y(0)

n ) + O(ε1/2)

Fig. 3.2 illustrates a threshold resonance as in (3.35-3.36). As we approach
threshold from below, the scattered state approaches a state which begins as
bound in the x direction (Fig. 3.2a), but becomes progressively more weakly
bound as we approach threshold. At threshold, the scattered state merges with
the continuum, and for wavenumbers just above threshold, the scattered state



propagates slowly in the x direction (Fig. 3.2b). The threshold resonance thus
corresponds to quasibound states which conduct along the wire. Because of
resonant tunneling to other states, and because these states do not exist in the
absence of an incoming wavefunction, these states are quasibound rather than
truly bound. From (3.35-3.36), exactly on a threshold resonance, the array
is entirely transparent and the incident beam is entirely transmitted. This
transparency is a form of the Ramsauer-Townsend effect.

Figure 3.2: Threshold resonance for a unit cell with five randomly placed scatter-
ers (hard disks, a = 0.1). For clarity, we show only the scattered wavefunction;
the incident wave is a plane wave and is fully transmitted. The quasibound
state just below resonance, at wave number kd = 2π − 0.3, becomes unbound
just above resonance, at kd = 2π+ 0.3 (right). The scattered wavefunction just
above and below threshold is given by (3.35, 3.36). The scattered wavefunction
is asymmetric across x = 0 because the unit cell is; a symmetric unit cell would
yield a symmetric scattered wavefunction.

3.4.2 Conducting States

An array of attractive scatterers, in the limit where the scatterers are closely
spaced, should resemble a 2D potential trough. We thus expect that an array
of attractive scatterers will give rise to a set of states which are purely bound
along the array. Such conducting states, like the quasibound states discussed in
Section 3.4.1, would be evanescent in the x direction, but free in the y direction,
and thus correspond to states conducting along the array. In contrast to the
quasibound states in Section 3.4.1, which in a time dependent picture eventually



3.4. Mechanisms for Guiding: Quasibound and Bound States 49

leak away from the wire, a true conducting state would conduct forever. We
are particularly interested in conducting states which might be experimentally
accessible and relevant to scattering processes, and we theref ore search for
conducting states that exist for positive energies.

In any quantum system, a bound state must be localized, and exist in the
absence of an incoming wavefunction. For a single point scatterer in free space,
the existence of bound states thus corresponds to negative energy poles of the
t matrix. In the array scattering case, Foldy’s method turns the Lippman-
Schwinger equation into the matrix equation (3.16), which we rewrite as[

(1− sGr) M̃
]−1

~ψ(0) = ~φ(0). (3.37)

The existence of a scattered wavefunction for a zero incoming wavefunction
implies the existence of a homogeneous solution to (3.37). States which exist in
the absence of an incoming wave thus exist at values of ~k which are roots of the
secular equation

(1− sGr)N det M̃ = 0. (3.38)

For the single wall, (3.38) simply becomes

1− sGr = 0. (3.39)

It is not a given that bound states exist for a particular grating. While the
quasibound states in Section 3.4.1 exist independent of the t matrix of the
individual scatterers, the bound states determined from (3.38) depend on s(k).
An array of repulsive scatterers, while possessing infinitely many quasibound
states, would not have any truly bound states.

We are interested in states which conduct along the array. Such states, which
are evanescent in the x̂ direction but propagate in the ŷ direction, correspond
to wavevectors of the form

~k = iκxx̂+ ky ŷ (3.40)

where κx is real. The solutions we seek to (3.38) are thus of this form. In
order to find conducting states, we evaluate s̃ on a grid of values of (κx, ky),
and numerically search for poles. The energy of a bound state with wavevector
(3.40) corresponds to an energy

E =
1
2

√
−κ2

x + k2
y.

A bound state which has E > 0 corresponds to a pole of the renormalized t



matrix, with |ky| > |κx| . The conducting states depend sensitively on the nature
of the individual scatterers, and must be calculated for a specific grating. In
Section 3.5 we examine the conducting states for a single wall of atoms.

In this section, we have outlined a number of phenomena which are general
to periodic gratings: Diffraction, the existence of quasibound conducting states
at threshold resonances, and the equations determining the existence of bound
states. To proceed, we must now choose a particular form of grating. In Sec-
tion 3.5, we examine, in detail, the simplest grating which exhibits all of these
features: the single wall of atoms.

3.5 Transport by Single Walls

The results of Section 3.3 combine two effects: multiple scattering effects within
each unit cell, which are contained in the inversion of the matrix M̃, and multiple
scattering effects between unit cells, which are contained in the renormalized t

matrix s̃ and the effective Green’s function G(~r). In Section 3.3 we discussed
certain effects which are independent of the configuration of each unit cell, e.g.
diffraction, the existence of subthreshold bound states, and the existence of a set
of purely bound states. In order to understand these effects which are purely
due to periodicity, we examine a periodic array of equally spaced scatterers.
Consider a beam φ(~r) = 1√

kx
ei
~k·~r incident on a wall of atoms at positions

~rn = (0, nd). For this array, the second term in (3.16) (which corresponds to

Figure 3.3: Scattering from a line of atoms.

multiple scattering within the unit cell) vanishes. Applying the formalism of
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Section 3.3, the scattered wavefunction is

ψ(~r) = φ(~r) + s̃

∞∑
n=−∞

G0(~r, ~rn)eikyndφ(0). (3.41)

This result has been obtained in [34] via a different approach, in the context of
scattering solutions to the semiinfinite array.

We note the similarity of our entire formalism to the formalism for scattering
from point scatterers in a confined geometry (see e.g. [1], [11]). When a cluster
of scatterers is placed in an external confining potential, the effect of the exter-
nal potential can be absorbed into a renormalized t matrix and a new Green’s
function; the renormalized t matrix for a confined geometry in fact has a general
form very similar to (3.18). The similarity results from the fact that both scat-
tering from gratings and scattering in confined geometries involve interference
phenomena related to multiple scattering. In a grating, renormalization effects
arise due to multiple scattering between unit cells. If a single unit cell is placed
in a waveguide, similar renormalization effects arise because reflection from the
waveguide walls leads to multiple scattering from the unit cell.

For scattering from impurities confined in periodic or hard walled 2D strip
waveguides, the mapping from a grating to a confined geometry is exact. Apply-
ing the method of images to a cluster of scatterers in a hard-walled or a periodic
guide yields an array of image scatterers. Mathematically, the only difference
between these confined geometries and the array is that in a confined geome-
try, the incident wave must satisfy the boundary conditions of the waveguide.
In [38], we examined the case of a point impurity confined to a two-dimensional
hard walled waveguide. With ky = 0, (3.41) has the same form as the scat-
tered wavefunction for a periodic wire with a scatterer in the middle, whereas
if ky = π

d we recover the case of a Dirichlet waveguide with a scatterer in the
middle.

In Section 3.6 we discuss why breaking the translational symmetry of the
system, for example by truncating the infinite array, is required in order to use
the array as a waveguide. Where possible, in this section we have compared the
analytic results for the infinite array with corresponding numerical results for
the semiinfinite wall. The methods we use in this section relate to work on other
similar systems: scattering from a continuous, semiinfinite two dimensional line
was solved analytically in a classic work by Sommerfeld [47]. Ref. [34] treats the
problem of the infinite discrete array directly rather than as a special case of
the results in Section 3.3, and applies the result to approximate scattering from



a discrete, semiinfinite array, and Ref. [48] treats scattering from continuous
rather than discrete of atoms.

3.5.1 Walls of Scatterers and Unitarity

In this section we derive an effective optical theorem for the single wall of scat-
terers, and suggest that a similar optical theorem must be imposed in order to
use the methods presented in Ref. [48]. Consider a beam

φ(~r) =
1√
k

(0)
x

ei
~k·~r

incident on the infinite array. In order for unitarity of the S matrix to follow
directly from current conservation, we have normalized the incident beam to
have unit flux on the unit cell of the array. For |x| very large, (3.26) simplifies
to give a plane wave expansion of the far field scattered wavefunction

ψ(~r) =
1√
k

(0)
x

ei
~k0·~r − i

d
s̃

∑
q∈Q

1√
k

(0)
x k

(q)
x

× 1√
k

(q)
x

eik
(q)
x |x|eik

(q)
y y

 .(3.42)

We have omitted the evanescent modes, which decay far from the wall. Sup-
pose the incident beam is at normal incidence, ~k = kx̂. The reflection and
transmission probabilities from the incident (0th) mode into the qth mode are

Rq = − is̃
d

1√
k

(0)
x k

(q)
x

(3.43)

Tq = δq0 +Rq

Unitarity of the S matrix requires that∑
q∈Q

(
|Rq|2 + |Tq|2

)
= 1

or

ReR0 = −
∑
q∈Q
|Rn|2 . (3.44)

Eq. (3.44) relates the total probability of reflection to the real part of the
coefficient reflected in the backwards direction. Furthermore, (3.44) yields an
effective optical theorem for the wall, i.e., a restriction on the renormalized t
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matrix resembling the ordinary optical theorem (3.1):

−Ims̃ = |s̃|2
∑
q∈Q

1

k
(q)
x d

. (3.45)

Using (3.18) and (D.2.7), it is straightforward to verify that s̃ satisfies the uni-
tarity condition (3.45) as long as the single-scatterer t matrix s(k) satisfies the
free space unitarity condition

|s|2 = −2Ims.

In Appendix E we connect our formalism to the boundary wall method described
in Ref. [48] for studying scattering from arbitrarily curved walls.

3.5.2 Phenomena Related to Guiding: Quasibound States

and Conducting States

3.5.2.1 Threshold Resonances and Quasibound States

We define R, the total probability of reflection as

R =
∑
q∈Q
|Rn|2

= −ReR0

= − Ims̃

k
(0)
x d

where we have used (3.43,3.44). The total transmission T is, then

T = 1−R

= 1 +
Ims̃

k
(0)
x d

.

From (D.2.7), as the incident beam becomes parallel to the array,

lim
k=k

(q)
y ±ε

Gr = − i
d

1√
±2k(q)

y ε

approaches infinity near resonances, and at these energies T → 1 even when
the scatterers are close together. The energies of the threshold resonances are
independent of the properties of the individual scatterers that make up the wall:



Approaching a threshold resonance,

lim
k=k

(q)
y ±ε

s̃ =
1
Gr

(3.46)

so that from (3.46), all dependence on the bare t matrix s(k) cancels. The
shapes of the resonances do depend on the scatterers.

Fig. 3.4 shows the transmission of the wall as a function of the wavenumber
of the incident beam. The transmission is nearly zero at low k, for which the
scatterer spacing is comparable to the wavelength, but the incident wave is
fully transmitted at high energies, where the scatterers are far apart compared
to a wavelength. In this limit we explicitly recover semiclassical ray-tracing:
Substituting the asymptotic form of the Hankel function in (D.1.1), we obtain
the semiclassical expression

G(~r) ≈ 1
2
e−3iπ/2

∞∑
n=−∞

√
2

πk |~r − ~rn|
eik|~r−~rn|eikynd.

The wavefunction at ~r includes a contribution from each scatterer, with the ap-
propriate phase. The phase includes a contribution proportional to the classical
action (in this case, the path length to the scatterer) in addition to the phase
of the incident wavefunction at the scatterer.

Figure 3.4: (a) Transmission coefficient for scattering of an incident beam with
wavenumber k from a wall of hard disks with radius a. The incident beam is
at normal incidence (k(0)

y = 0). At low energies, the beam is fully reflected; at
high energies the beam is almost entirely transmitted. Note the transmission
resonances occur at k = k

(n)
y , which are discussed further in Section 3.5.2.1. (b)

Structure of the resonances at a = 0.1 (dashed line in (a)).
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Quasibound States As demonstrated in Section 3.3, the incident beam is
transmitted near a resonance, but the scattered wave travels along the y axis.
For the single chain of atoms, (3.35,3.36) simplify to

lim
k=k

(q)
y −ε

ψ(~r) = ei
~k0·~r +

i

d
e−

q
2k

(n)
y ε|x|eik

(n)
y y (3.47)

+O(ε1/2)

lim
k=k

(q)
y +ε

ψ(~r) = ei
~k0·~r − 1

d
ei

q
2k

(n)
y ε|x|eik

(n)
y y (3.48)

+O(ε1/2).

For the infinite array, the incident beam is fully transmitted at threshold: Flux
is conserved because the trapped wave carries no current away from the array.
This transparency of the wall at threshold is related to the Ramsauer-Townsend
effect. Fig. 3.5 illustrates the threshold resonance, and compares results for
the infinite wall with numerical results for the finite wall. Our numerical results
suggest that the trapping is significantly weaker for the finite array, as amplitude
sheds off the array and also diffracts from the ends. For the finite array, however,
the trapped state does not behave very differently above and below threshold.

3.5.2.2 Conducting States and Band Structure for the Single Wall

In Section 3.4.2, we discussed conducting states bound in the x direction, as well
as the criteria for such states to exist. For the single wall, these states satisfy
(3.39). We examine these states in detail in this section. The presence or absence
of bound states depends sensitively on the form of the scatterer potential: an
extreme example is that no wall of repulsive hard disks will bind. We discussed
in Section 3.2 how a t matrix could exactly simulate the s wave scattering from
any potential, if we chose the form of s(k) appropriately; we here briefly discuss
how to choose our t matrix s(k) to simulate particular potentials.

Generic Scatterers with a Bound State We choose s(k) to represent a
scatterer with a bound state at k = iκ. This requires that s(k) have a pole at
k = iκ, satisfy the free space optical theorem (3.1), and vanish as k → 0. By
arguments similar to [49, p. 417] we find that the simplest form of s(k) which
satisfies these requirements is

s(k) =
−2ik
k − iκ

. (3.49)



Figure 3.5: Quasibound States at Threshold Resonances: Probability density
|ψs(~r)|2 of the scattered wavefunction near threshold for kd = 10π−0.1 ((a), (b))
and kd = 10π+0.1 ((c), (d)). This figure shows only the scattered portion of the
wavefunction; the full wavefunction is given for the infinite array in (3.47, 3.48).
We have omitted the incident plane wave, as it obscures the features we wish to
emphasize. We have assumed normal incidence (k(0)

y = 0). Comparing the finite
((a), (c)) and infinite ((b),(d)) arrays, the trapped wave remains mostly trapped
in the finite array–though the trapping is weaker, and some leakage away from
the array is visible. The tradeoff is that in contrast to the infinite array (c), the
finite array shows trapping even above threshold (d).

Soft Disk The potential in Section 3.5.2.2 is a generic representation of a
bound state, and does not correspond to a physical potential; for any realistic
potential, s(k) should vanish as k → ∞. An example of a potential for which
we can analytically calculate the s wave scattering properties is a soft disk of
radius a,

V (r) = V0Θ(R− a). (3.50)

We are particularly interested in the case V0 < 0, corresponding to an attractive
disk.
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The s wave phase shift δ0 for the soft disk potential is determined by conti-
nuity of the logarithmic derivative of the wavefunction at r = a :

tan δ0 =
qJ0(ka)J1(qa)− kJ1(ka)J0(qa)
qY0(ka)J1(qa)− kY1(ka)J0(qa)

(3.51)

where
q ≡

√
2(E − V0)

is the wavenumber inside the disk.
Having calculated the s wave phase shift, it is straightforward to confirm

that we can simulate the s wave scattering from a soft attractive disk with a t
matrix

s(k) =
−2 tan δ0

1− i tan δ0
. (3.52)

The negative energy poles of the t matrix (A.0.6) occur at

qK0(κa)J1(qa) = κK1(κa)J0(qa) (3.53)

where κ ≡
√
−2E. Eq. (A.0.7) can easily be shown to be the characteristic

equation for bound states of the 2D cylindrical well.

Band Structure for Conducting States We used the forms in (3.49) and
(A.0.6) to simulate three potentials: A potential with a generic bound state at
κ = 5, a soft disk with a single bound state at κ ≈ 1.38, and a soft disk with two
bound states at κ ≈ 1.38 and κ = 4.02. We discussed in 3.4.2 how conducting
states of the array correspond to poles of s̃(~k), where the wavevector ~k has the
form

~k = iκxx̂+ kyy.

To find the conducting states, s̃(k) was numerically evaluated on a 2D grid in
order to search for poles. Our results, and the manifold of poles in ~k space, are
indicated in Fig. 3.6(a, c, e) for each of the three potentials. In each panel,
the solid black curves correspond to the manifolds of conducting states for the
array. The dashed red curves, for comparison, are the contours

−κ2
x + k2

y = −κ2,

corresponding to the bound state energies of a single scatterer. A more tradi-
tional view of the band structure for each potential is presented in Fig. 3.6(b,
d, f), where the energies of the conducting states versus ky have been plotted.



For the generic bound state, as indicated in Fig. 3.6(a, b), we are always in
the tight binding limit. The renormalized t matrix s̃(k) has poles exactly where,
and only where s(k) does–the array binds states at the binding energy of the
scatterer. We are not able to create bound states in the continuum, for E > 0.
The results are more interesting in the two arrays of physical potentials, with
finite scattering lengths. In these examples, the array deforms the bound states
of a single scatterer. In both cases we see in Fig. 3.6(d, f) that bound states
are embedded in the continuum at E > 0, and can in principle be accessed with
a propagating incident wave 3.6. These poles are the only poles of the infinite
array, but are also are a subset of the poles of the array of any repeating unit
cell of scatterers. Fig. 3.7 illustrates a representative bound state.

3.6 Arrays of Atoms as Waveguides

We discuss, in this section, how a wall of atoms might be used to guide waves.
By guiding, we mean that if an incident beam is focused on some part of the
grating, the scattered wave propagates along the grating for a long distance. In
Sections 3.5.2 and 3.4, we discussed the existence of states that are quasibound
or bound along the infinite array. These states, as such, are not an example
of transport; being translationally invariant along the array, they can only be
accessed by initial conditions that are already translationally invariant, such as
plane waves. Any actual application of the phenomena discussed in this chapter
thus requires that the array have a symmetry breaking point where an incident
wave can be injected. In particular, in order for a localized beam aimed at the
array to conduct, the array must have a defect or an end. The asymmetry will
of course affect the properties of the grating, e.g. diffraction, impedance, etc.
While we can use our results on the infinite array as a basis for studies of guiding
in related systems, the infinite array itself is not a waveguide.

3.6.1 Guiding by a Semiinfinite Array

Consider an incident beam

φ(~r) =
1

2π

∫ π/2+β

−π/2+β

g(θk − β)ei~k(θk)·~rdθk, (3.54)

where g(θk) = e−(θk/w)2 . Eq. (3.54) represents a beam incident from the right,
focused on the scatterer at ~r = 0, and rotated by an angle β from the positive
x axis. The incident beam (3.54) with β = 0 (normal incidence) is shown in
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Figure 3.6: (a,c,e) show the curves along which s̃(iκx, ky) has poles (the sym-
metry across ky = 0 is due to reflection symmetry of the array along y = 0).
These curves correspond to manifolds of states bound in the x direction, and
propagating along the array. The red curves, for comparison, are contours of
wavevectors corresponding to bound state energy of a single scatterer. (b,d,f)
show the band structure (E vs. ky) for the conducting states. Panels (a,b)
are for the t matrix (3.49) with κ = 5: The conducting states are trivial tight
binding states at the single scatterer binding energy. with wavevectors along
the contour −κ2

x + k2
y = 52. (c,d) For a soft disk with V0 = −10, a = 0.2, a

single bound state exists at κ ≈ 1.38. This state is perturbed in the array. (e,f)
Increasing the disk radius to a = 1.0, a second bound state appears at κ ≈ 4.02.
Both states are perturbed in the array. In (b-f) the bound states can be shifted
to E > 0.



Figure 3.7: Contour plot of a conducting state at positive energy: The bound
state corresponds to the wavevector ~k = (i, 1.665) in Fig. 3.6(e-f).

Fig. 3.8(a). As w → 0, φ(~r) approaches a plane wave, and for w → ∞, φ(~r)
becomes a spherical wave, and its form is related to the Fourier transform of the
spherical wave J0(kr). We are interested in intermediate values of w, for which
(3.54) represents a focused beam.

Using our results for the infinite array as a guide, we take a purely numer-
ical approach to the study of guiding in finite and semiinfinite arrays, as these
systems are difficult to treat analytically. Analytical studies (e.g. [47], [34]) typ-
ically conclude that scattering from the semiinfinite array reproduces certain
major features of the infinite array: Resonances, diffraction, etc. The main dif-
ference is that in the semiinfinite case, a spherical wave emanates from the end
of the array. Most studies of semiinfinite arrays begin with the infinite solution,
and derive this spherical edge wave as a correction term.

We demonstrate guiding numerically in Fig. 3.8. The scatterers are closely
spaced, and the focused beam is aimed at the end of the array. In Fig. 3.8(c),
a guided state clearly propagates along the array. The guiding occurs at low
energies, near bound states of the infinite array. Guiding does not occur for
repulsive scatterers, confirming that the coupling is to the true bound states of
the array rather than the quasibound states.
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Figure 3.8: Guiding of a focused beam with k = 0.5π, d = 0.1. The scatterers
are indicated by red dots. These plots show the probability densities of (a) the
incident beam, focused on the end of the array (b) The scattered wave, which
is guided along the array, and (c) the full scattered wavefunction (incident plus
scattered). The individual scatterers are attractive wells with V0 = −10 and
radius a = 0.2, the same form used in Fig. 3.6(c)-(d). The spherical edge wave
is clearly visible in (c).

The guiding is robust and extends to gently curved and finite walls as well,
as we demonstrate in Fig. 3.9, where a beam focused on one end of a curved wall
emerges at the other end. The scatterers are effectively behaving like a light
pipe for a matter wave. If the wall is curved sharply relative to the wavelength
of the incident beam, amplitude leaks out as adiabaticity breaks down.

In this section, we have demonstrated via numerical simulations that the
E > 0 conducting states of the array can be exploited to guide waves along a
semiinfinite wall of attractive, closely spaced scatterers. The physical explana-
tion is that a semiinfinite wall of attractive potentials behaves like a trough, and
furthermore that because the trough has an end, it is possible to couple into
conducting states via injecting a beam into the end.

3.7 Conclusions and Future Directions

In this chapter, we have examined scattering from, and guiding by, quasi-1D
periodic gratings of scatterers embedded in 2D. This system is an unusual one
due to the coexistence of scattering phenomena, such as transmission, reflec-
tion, and resonance, with features typical to periodic systems: Band structure,
diffraction and conduction along the array. Our motivation for examining this



Figure 3.9: Guiding of a focused beam along a finite wall; k = 3π. The scatterers
are the same attractive disks as in Fig. 3.8. These plots show the probability
densities of (a) the incident beam, (b) the scattered wave, and (c) the full
scattered wavefunction (incident plus scattered). In (b), amplitude visibly leaks
away near the sharp bend near y = 0, as a consequence of nonadiabaticity.

system is that the system can be built, modeled, and applied: (1) Arranging in-
dividual atoms on substrates, often in patterns far more intricate than gratings,
has become an established experimental technique [27–29,50] (2) The standing
wave patterns in these systems have been very successfully modeled by multiple
scattering theories, such as we have applied here [30–32] and (3) A grating of
particles which possess bound states can potentially serve as a waveguide for
other particles.

We have, in this chapter, developed a multiple scattering theory (related
to the KKR method) for quasi-1D gratings of s wave scatterers, embedded in
2D. The central physics is Bloch’s theorem: We can obtain the full scattered
wavefunction from the solution for a single unit cell, by replacing the t matrix of
an individual scatterer with its renormalized version, and the free space Green’s
function with an effective Green’s function. We have used the result to discuss
some general effects, such as resonances, quasibound states, and bound states,
each of which we have examined in detail for the simplest grating: A single
chain of atoms. Finally, we have demonstrated numerically that bound states
of the semiinfinite or finite array can be used to guide waves along straight or
curved walls.

This work can be extended in a number of directions. We have chosen to
embed our system in 2D because 2D is the relevant dimensionality for electrons
in surface states scattering from atoms adsorbed on a metallic surface. With
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a change in the free space Green’s function, one could, however, revise the
entire theory to treat a quasi-1D array embedded in 3D, such as might be
relevant if the scatterers were atoms confined to an optical lattice. The physics
of renormalization and interference in a 3D system would be very similar, and
presumably near identical guiding effects would arise. Among the reasons that
we have taken a multiple scattering approach to the system is that it can be
generalized to the introduction of impurities or defects into the array. We have
discussed how symmetry breaking is required for guiding to occur. Introducing
an impurity or defect in an infinite array is one way of breaking symmetry;
the impurity behaving as an antenna which brings an incident wave into the
conducting state. The problem of impurities in the array is also interesting
from a theoretical point of view, in the sense that the array with an impurity
becomes a scattering system in the conducting mode, yielding, in essence, a
scattering theory within a scattering theory. Furthermore, Foldy’s method has
recently been extended to include Rashba spin-orbit coupling [51], and it may
be possible to modify the results of this chapter to examine spintronic versions
of guiding.



Chapter 4

Further Applications of t

Matrices

In this chapter we present analytic solutions for several seemingly disparate
systems, which can all be treated via renormalized t matrices. We begin by
examining the problem of two particles interacting on the surface of a tube. We
then show how the renormalized t matrix formalism can be extended to treat
a single two-level atom in confinement. We continue to study the problem of
scattering from a double wall of atoms, and to examine scattering from a circle
of atoms. We then propose a formalism for going beyond the s wave limit, and
including the scattering of higher partial waves into some of the periodic systems
we have described here.

4.1 Particles Interacting on a Tube

In this section, we consider the problem of low-energy scattering of two moving
atoms confined to the surface of a tube. We model the interaction via a zero
range interaction along the cylinder surface. We reduce the problem in the rela-
tive coordinate to that of one scatterer in a hard or periodic 2D wire, depending
on the parity of the states.

4.1.1 Introduction

Consider two particles interacting on the surface of a cylinder. This problem is
of interest for two reasons: The first is that it is a simple example of interacting
particles in a confined geometry, and the second is that it is a simple model for

64
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Figure 4.1: Two particles confined on the surface of a nanotube. The coordinates
of the ith particle are (si, zi).

the physics of atoms or molecules moving just outside nanotubes. In particular,
for molecules coating the inner surface of nanotubes having a radius of approxi-
mately 6−9 Angstroms, the nanotube is well approximated as an infinitely long
tube of radius R [52].

Suppose two interacting particles are free to move on the tube surface. Define
the coordinates of the ith particle on the cylinder as ~ri = (si, zi) as in Fig.
4.1. For the moment, we shall consider an interaction along the surface of the
nanotube, generated by screening effects for example. The interaction potential
would be along the tube’s geodesic:

V (~r) =
√

(s2 − s1)2 + (z2 − z1)2.

Schrodinger’s equation for the two scatterers, with periodic boundary condi-
tions, is[

− ~2

2m
(
∇2

1 +∇2
2

)
+ V (~r)

]
Ψ(s1, z1, s2, z2) = EΨ(s1, z1, s2, z2) (4.1)

Ψ(s1 + 2πR, z1, s2, z2) = Ψ(s1, z1, s2, z2) (4.2)

Ψ(s1, z1, s2 + 2πR, z2) = Ψ(s1, z1, s2, z2) (4.3)

In the absence of the waveguide boundary conditions (4.2-4.3), we would sep-
arate (4.1) into center of mass and relative coordinates. This problem (two
bodies plus a potential) belongs to a class of problems called a restricted two
body problem; such problems are not generally analytically soluble. However,
as shown in [53], this problem happens to be nearly separable. We show that,



in the limit of s wave scattering, we can use this near separability to map the
problem onto two sub-problems, each of which is closely related to the quantum
wire discussed in Chapter 2. We find analytic solutions to these sub-problems
by methods similar to those in Chapter 2.

4.1.2 Separation of Variables

As in [53], we define “relative” and “center of mass” coordinates

~r = ~r2 − ~r1

~R =
1
2

(~r1 + ~r2) .

As in the free space case, Schrodinger’s equation (4.1) separates:[
− ~2

2M
∇2
~R
− ~2

2µ
∇2
~r + V (~r)

]
Ψ(~R,~r;E) = EΨ(~R,~r;E) (4.4)

where we define the total mass M = 2m and the reduced mass µ = m/2.
We must also transform the boundary conditions (4.2, 4.3) into the new

coordinate system. The transformed boundary conditions are

Ψ(s, S, z, Z) = Ψ(s− 2πR, S + πR, z, Z)

= Ψ(s+ 2πR, S + πR, z, Z).

Suppose our wavefunction consists of a superposition of terms of the form

Ψ(~r, ~R) = χ(~R)ψ(~r). (4.5)

The product wavefunctions (4.5) satisfy separate Schrodinger equations

− ~2

2M
∇2
~R
χ(~R;Ecm) = Ecmχ(~R;Ecm)

− ~2

2µ
∇2
~rψ(~r;Er) + V (~r) = Erψ(~r;Er)

where
Ecm + Er = E.
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The product wavefunctions now have boundary conditions

χ(S + πR,Z) = ±χ(S,Z) (4.6)

ψ(s+ 2πR, z) = ±ψ(s+ 2πR, z) (4.7)

where the plus and minus signs are correlated–which is the difference from free
space. If the problem were truly separable, any χ multiplied by any ψ would give
a solution. In this case the solutions are quasiseparable, and χ and ψ must have
common parity. Note that this separation fails for other very similar problems,
such as the case of two interacting particles in a hard wire. We henceforth attach
a superscript denoting the parity of each solution, so that χ±(S,Z) and ψ±(s, z)
are the center of mass and relative wavefunctions which satisfy the appropriate
boundary conditions in (4.6, 4.7).

4.1.3 Incident Wave

We now wish to find scattering solutions to (4.4). Suppose the incoming wave-
function is a plane wave

Φ(~r1, ~r2) = ei
~k1·~r1ei

~k2·~r2

= ξ(~R)φ(~r) (4.8)

where ξ(~R) = ei
~K·~R, φ(~r) = ei

~k·~r, and ~K = ~k1 + ~k2, ~k = 1
2

(
~k2 − ~k1

)
are the

relative and center of mass wavevectors. The incident wave must satisfy the
boundary conditions

ξ(S + πR,Z) = ±ξ(S,Z) (4.9)

φ(s+ 2πR, z) = ±φ(s+ 2πR, z) (4.10)

of the waveguide. These boundary conditions lead to constraints on the values
of KS and ks:

K
(n)
S =

n

R

k(p)
s =

p

2R

where n or p are either both even, or both odd. The other two radial quantum
numbers, KZ and kz, are not quantized: The set of all quantum numbers is



constrained by
~2

2

(
K2

M
+
k2

µ

)
= E.

4.1.4 Center of Mass Wavefunction

The center of mass wavefunction satisfies the following relation for a free particle
with periodic or antiperiodic boundary conditions:

− ~2

2M
∇2
~R
χ±(~R;Ecm) = Ecmχ

±(~R;Ecm) (4.11)

χ±(S + πR,Z) = ±χ±(S,Z). (4.12)

Since (4.11) corresponds to free propagation, the scattering solution is simply
the incoming center of mass wavefunction given in (4.8):

χ±n (~R;Ecm) = einS/ReiK
(n)
Z Z , n even (odd)

where
~2

2M

[( n
R

)2

+
(
K(n)
z

)2
]

= E(n)
cm .

While Ecm is a continuous parameter, for a given Ecm, KS and KZ are quan-
tized.

4.1.5 Relative Wavefunction

The relative wavefunction satisfies the equation

[
− ~2

2µ
∇2
~r + V (~r)

]
ψ±(~r;Er) = Erψ

±(~r;Er)

ψ±(s+ 2πR, z) = ±ψ±(s, z)

We have again denoted the parity with a superscript. Suppose we represent
the interaction potential V (~r) = V (s, z) between the two particles as s wave
scattering. In this approximation, we can shift to the T matrix formalism where

V Gψ = Tφ

and
t = s(k)

∣∣∣~0〉〈~0∣∣∣
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represents the scatterer. The problem thus maps onto that of a scatterer cen-
tered in a hard or periodic strip waveguide of width 2πR.

Applying the results of [54], the solution to this problem is

ψ±(~r) = φ(~r) + s̃±(~k)G±(~r;~k)φ(~0)

where φ(~r) is an incoming wavefunction and s̃± is an effective t matrix describing
the interaction. The forms of G±(~r) and s̃±(~k) are

G+(~r;~k) =
∞∑

n=−∞
G0(~r, 2πnRŷ) (4.13)

G−(~r;~k) =
∞∑

n=−∞
(−1)nG0(~r, 2πnRŷ) (4.14)

s̃+(~k) =
∞∑

n=−∞
n 6=0

G0(~r, 2πnRŷ)

s̃−(~k) =
∞∑

n=−∞
n 6=0

(−1)nG0(~r, 2πnRŷ)

We have previously shown that

G(~r) =
∞∑

n=−∞
G0(k |~r − 2πnRŷ|)eik

(0)
s ×2πnR (4.15)

=
i

2πR

∞∑
q=−∞

1

k
(q)
z

eik
(q)
z |z|eik

(q)
s s

where

k(q)
s = k(0)

s +
q

R

k(q)
z =

√
k2 −

(
k

(q)
s

)2

.

We see that with k(0)
s = 0, (4.15) becomes (4.13), whereas with k(0)

s = 1
2R , (4.15)

becomes (4.14).



The result is that the wavevectors are characterized by parity:

k(q,±)
s =

q

2R

k(q,±)
z =

√
k2 −

( q

2R

)2

where ~k(q,±) corresponds to q even or odd respectively.
We thus have a plane wave expansion for the scattered wavefunction in the

relative coordinate. If the initial relative wavefunction is

φ(~r) =
1√
k

(p)
z

eik
(0)
z zei

p
2R , (4.16)

with p even, the scattered relative wavefunction is

ψ(+)(~r;~k) =
1√
k

(p)
z

eik
(0)
z zei

p
2R − is̃+

2πR

∑
q even

1

k
(q)
z

eik
(q)
z |z|eik

(q)
s s.

If the initial wavefunction (4.16) has p odd, it scatters into the odd parity modes

ψ(−)(~r;~k) =
1√
k

(p)
z

eik
(0)
z zei

p
2R − is̃−

2πR

∑
q odd

1

k
(q)
z

eik
(q)
z |z|eik

(q)
s s.

The parity of the relative wavefunction is conserved by the scattering.

4.1.6 The S Matrix

A first step to understanding the many-body system is to write down the S
matrix for the two body collision.

If the energy of the system is fixed, the initial state is indexed by the total
energy E as well as the center of mass and relative radial quantum numbers, n
and p. Since we are considering only elastic scattering processes, E is fixed in
a collision, and the entries of the S matrix are indexed by Snm,pq. An incident
wavefunction

Φ(~r, ~R) =
1√

K
(n)
z k

(p)
z

eiK
(n)
z zeinS/Reik

(p)
z zeips/R
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scatters into the following state:

Ψ(~r, ~R) =
1√
K

(n)
z

eiK
(n)
z zeinS/R × (4.17)

eik(p)
z zeips/R − is̃±

2πR

∑
q even/odd

1√
k

(p)
z k

(q)
z

1√
k

(q)
z

eik
(q)
z |z|eiqs/2R

 .
The ± indices as well as the parity of q over which the sum runs depend on
the parity of p. Defining the parity function Π(p, q) = 1 if (p, q) are of the
equal parity, and zero otherwise, we can read off reflection and transmission
coefficients from (4.17):

Rnm,pq =

 δnm ×
(
− is̃±

2πR

)
1√

k
(p)
z k

(q)
z

Π(p, q) = 1

0 Π(p, q) = 0

Tnm,pq = δnmδpq +Rnm,pq

The scattering conserves parity, and the S matrix can be made block diagonal.
We have, in this section, solved for the scattering of two particles interacting

via s wave scattering, with an arbitrary potential, along the surface of a tube.
We have characterized the solutions by parity, and derived an analytic expres-
sion for the scattering matrix for this system. This result has two potential
uses: One could use it as a simple model for the problem of particles on nan-
otubes, which is typically solved using an exact potential rather than a t matrix
representation (see e.g. [52]) or alternately one could use this S matrix as a
launching point for a general study of collisional decoherence in confined dilute
many-body systems, assuming that only binary collisions are relevant. While
the model of a tube is not a particularly realistic model for an atom waveg-
uide (although one could imagine using counterpropagating beams to generate
a cylindrical optical trap) many features of the solution are probably general
to different types of confinement. The problem of two particles with a point s
wave interaction on a tube is extremely unusual in that it can be completely
solved analytically, whereas the equally reductionist problem of two particles
in a hard-walled wire cannot (that problem does, however, reduce to scattering
from a delta wire stretched across a box). We thus close this section with an S
matrix for this system, and some suggestions for its potential use.



4.2 Two Level Atoms in a Hard Walled Guide

In this section we present a calculation which shows that the renormalized t ma-
trix formalism can be extended to treat scattering from a multilevel impurity
confined to a hard-walled guide. We stress that this calculation is a very pre-
liminary one, as we have not incorporated dissipation. Dissipation effects could
perhaps be included phenomenologically by taking a master equation approach
to the system, using the scattering eigenstates we have calculated here.

4.2.1 Two Level Scattering in Free Space, No Dissipation

Consider the problem of a two level particle scattering from a fixed target in
a waveguide (or identically, a stuctureless particle scattering from a two level
particle). Denote the particle states as |1〉 , |2〉 such that the energy difference
is E2 − E1 = ∆. The incident wavefunction is then

φ = φ(1)(~r;E)⊗ |1〉+ φ(2)(~r;E)⊗ |2〉 .

When this beam scatters from an impurity, the possible transitions of the par-
ticle’s internal state are

|E; 1〉 ↔ |E; 1〉

|E; 1〉 ↔ |E −∆; 2〉

|E; 2〉 ↔ |E + ∆; 1〉

|E; 2〉 ↔ |E; 2〉

Our incident state is not an eigenstate of the total energy of the system, but
a combination of eigenstates with total energies E and E + ∆. The first two
states are degenerate with total energy E, and the second two are degenerate
with energy E + ∆.

We would like to find the scattering eigenstates of the system with total
energy E. We characterize a transition from level i to level j via the t matrix
sij(E1, E2), where E1 and E2 are the initial and final energies of the incident
particle. These t matrices determine the characteristics of the collision.

Define the free space Green’s function

G0(~r, ~r0;E) = − i
2
H0(
√
E|~r − ~r0|)

where H0 denotes the Hankel function of the first kind. In free space, we can set
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up the problem of a two state particle scattering from a structureless particle
at ~r0 as follows:[

ψ(1)(~r;E)
ψ(2)(~r;E −∆)

]
=

[
φ(1)(~r;E)

φ(2)(~r;E −∆)

]
+

G0(~r, ~r0;E)s(E)

[
φ(1)(~r0;E)

φ(2)(~r0;E −∆)

]

where

G0(~r, ~r0;E)s(E) ≡

[
G0(~r, ~r0;E) 0

0 G0(~r, ~r0;E −∆)

]

×

[
s11(E,E) s12(E,E −∆)

s21(E −∆, E) s22(E −∆, E −∆)

]
.

We can choose the elastic scattering t matrix elements to have the form of hard
spheres, while the inelastic elements include Breit-Wigner resonances at the level
transition frequency ∆, as the maximal inelastic cross section will occur at ∆.

4.2.2 Scattering in a Waveguide, Still No Dissipation

Confinement changes the scattering properties of the impurity; we use the
method of images to calculate the renormalized t matrices in the wire, in terms
of their free space values.

Using Foldy’s method, we can convert the confined problem to a problem of
multiple scattering from an infinite array of images at positions {~ri}:[

ψ(1)(~r;E)
ψ(2)(~r;E −∆)

]
=

[
φ(1)(~r;E)

0

]

+
∞∑

i=−∞
G0(~r, ~ri;E)s(E)

[
ψ

(1)
i (~ri;E)

ψ
(2)
i (~ri;E −∆)

]
.

where

[
ψ

(1)
i (~ri;E)

ψ
(2)
i (~ri;E −∆)

]
=

[
φ(1)(~ri;E)

0

]

+
∑
j 6=i

G0(~ri, ~rj ;E)s(E)

[
ψ

(1)
j (~rj ;E)

ψ
(2)
j (~rj ;E −∆)

]
.



Define the function

GR(E) ≡ lim
~r→~r0

[GW (~r, ~r0;E)−G0(~r, ~r0;E)]

=
∞∑

j=−∞
j 6=0

(−1)jG0(~r0, ~rj ;E)

which we recognize from Chapter 2 as the regular part of the wire Green’s
function, evaluated at the scatterer.

The condition of hard walls implies that the wavefunction must satisfy[
ψ

(1)
j (~rj ;E)

ψ
(2)
j (~rj ;E −∆)

]
= (−1)j

[
ψ

(1)
0 (~r0;E)

ψ
(2)
0 (~r0;E −∆)

]

The equations then become[
ψ

(1)
0 (~r0;E)

ψ
(2)
0 (~r0;E −∆)

]
= [I−GR(E)s(E)]−1

[
φ(1)(~r0;E)

0

]

where

GR(E) ≡

[
GR(E) 0

0 GR(E −∆)

]
.

These are simply four algebraic equations, in four unknowns. The full mul-
tiple scattering solution thus is the same in the wire, except with an effective
incoming wavefunction where the components are mixed:

[
ψ(1)(~r;E)

ψ(2)(~r;E −∆)

]
=

[
φ(1)(~r;E)

0

]
+ GW (~r, ~r0;E)s(E)

×

{
[I−GR(E)s(E)]−1

[
φ(1)(~r0;E)

0

]}
.

We have here demonstrated that the renormalized t matrix approach can, in
principle, be modified to treat to multistate systems. An accurate treatment
of a two-level system, however, would have to (perhaps phenomenologically)
incorporate radiative decay, our treatment here is a preliminary one.
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4.3 Scattering from a Circle of Atoms

In this section we consider scattering of a spherical wave scattering from a circle
of N atoms. We show that the solution is analytic, and also that far from the
circle, the circle looks like a point scatterer–but not with N times the strength
of a single scatterer, as one might expect; the difference is due to the usual
multiple scattering effects.

4.3.1 Scattering in a Circle

Suppose we have a circle of N atoms, indexed by n = 0, 1, 2, . . . N − 1, with the
nth atom located at

~rn = R(cos θn, sin θn)

where
θn =

2πn
N

(see Fig. 4.2).

x

y

R

Figure 4.2: Spherical wave scattering from a circle of N atoms.

Suppose each atom has an energy dependent scattering length, represented
by a t matrix s(k). Further suppose a spherical wave φ(r) emanating from the
center of the circle,

φ(r) = − i
2
H0(kr).



The recursive Foldy-Lax equations for multiple scattering are

ψ(~r) = φ(~r) + s(k)
N−1∑
n=0

G0(~r, ~rn)ψn(~rn) (4.18)

ψn(~rn) = φ(R) + s(k)
∑
n 6=m

G0(~rm, ~rn)ψm(~rm) (4.19)

By symmetry,
ψn(~rn) = ψ0(~r0). (4.20)

Combining (4.20) with (4.19) allows us to simplify the multiple scattering equa-
tions:

ψ0(~r0) = φ(~r0) + s(k)ψ0(~r0)
N−1∑
n=1

G0(~rm, ~r0)

=
φ(~r0)

1− s(k)
∑N−1
n=1 G0(~rm, ~r0)

. (4.21)

Substituting, we can thus find the full scattered wavefunction,

ψ(~r) = φ(r) +
s(k)φ(R)

1− s(k)
∑N−1
n=1 G0(~rm, ~r0)

N−1∑
n=0

G0(~r, ~rn)

= φ(r) +
s(k)φ(R)

1 + is
2

∑N−1
n=1 H0

(
kR
√

2
(
1− cos 2nπ

N

)) N∑
n=1

G0(~r, ~rn)

= φ(r) + s̃(k)φ(R)
N∑
n=1

G0(~r, ~rn) (4.22)

where we have defined a renormalized scattering strength

s̃(k) =
s(k)

1 + is(k)
2

∑N−1
n=1 H0

(
2kR sin nπ

N

) . (4.23)

See Fig. 4.3. Note that in the limit of one scatterer (N = 0, R = 0) s̃(k) = s(k),
and the scattered wavefunction also has the correct form for a single scatterer.
To simplify the sum in (4.23), we could use the identity

H0

(
kR
√

2(1− cos θ)
)

= J0(kR)H0(kR) + 2
∞∑
l=1

Jl(kR)Hl(kR) cos lθ.
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Figure 4.3: Real part of a spherical wave scattering from a circle of 35 scatterers
(indicated in red). Incident wave has wavenumber k = 36.1318, halfway between
resonances.

This identity, which is applied to the continuous circle in [48], yields

N−1∑
n=1

H0

(
kR

√
2
(

1− cos
2nπ
N

))
= (N − 1)J0(kR)H0(kR)

+2
∞∑
l=1

Jl(kR)Hl(kR)
N−1∑
n=1

cos
2lnπ
N

.

4.3.2 Transmission Properties of the Circle

To simplify the Lippmann Schwinger equation (4.22), we can now use the lim-
iting form of the Hankel function,

lim
kr→∞

H0(kr) =

√
2
πkr

ei(kr−
π
4 ).



At radii far from the circle, r � R, we have

ψ(~r) ≈ −i
√

1
2πk

[
ei(kr−

π
4 )

√
r

+s̃φ(R)e−iπ/4
N∑
n=1

e
ik

q
r2+R2−2rR cos(θ− 2nπ

N )[
r2 +R2 − 2rR cos

(
θ − 2nπ

N

)]1/4
 .

We can simplify the series expansion for |~r − ~rn| that we have used for R
r � 1:

|~r − ~rn| = r

√
1 +

(
R

r

)2

− 2R
r

cos
(
θ − 2nπ

N

)
≈ r

[
1− R

r
cos
(
θ − 2nπ

N

)]
and √

|~r − ~rn| ≈
√
r

[
1− 1

2
R

r
cos
(
θ − 2nπ

N

)]
so that

ψ(~r) ≈ −i
√

1
2π

{
ei(kr−

π
4 )

√
kr

+s̃φ(R)e−iπ/4
N∑
n=1

eikr[1−
R
r cos(θ− 2nπ

N )]
√
kr
[
1− 1

2
R
r cos

(
θ − 2nπ

N

)]} .
To calculate the transmission properties, we go to the limit r/R→∞, in which

ψ(~r) = −i
√

1
2π

{
ei(kr−π/4)

√
kr

+Ns̃φ(R)
ei(kr−π/4)

√
kr

}
. (4.24)

For comparison, scattering from a free space point scatterer at the origin
goes, at large r, as

ψ(~r) = φ(~r)− is(k)
ei(kr−π/4)

√
2kr

φ(0) (4.25)

where the scatterer has t matrix s(k). Comparing (4.24) with (4.25), we can see
that the wavefunction scattered from the circle of scatterers behaves effectively
like the wave scattered by a point scatterer at large radius. The effective scat-
tering strength is Ns̃ rather than simply Ns, which we might expect to be the
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result if we did not include multiple scattering.
For a single point scatterer in free space, we can define an effective cross

section
σ =

1
k
|s(k)|2 .

The effective “cross section” of the circle of scatterers is thus

σ =
1
k
N2 |s̃(k)|2 .

4.3.3 Quantum Interference Effects on Transmission

We wish to measure the“leakiness”of the cavity. The incident radial probability
flux is

Φi =
∫ 2π

0

dθjr,inc

= 1

The flux transmitted out of the cavity is

Φt = 1 + 2NRe (s̃φ(R)) +N2 |s̃φ(R)|2

≈ 1 + 2NRe (s̃φ(R)) +
N2 |s̃|2

kR

We find (Fig. 4.4) resonances in the reflection coefficient, roughly near the
bound state energies of the closed circle (kn defined by J0(knR) = 0). These
resonances have a finite width corresponding to the finite lifetime due to leakage
between the scatterers. This width corresponds to the quality factor Q of the
cavity.

4.4 Scattering from Double Walls

We present here the solution for scattering from a double wall, which is a partic-
ular case of the results in Chapter 3 that can be solved analytically. The double
wall is a problem of interest in the context of billiards that can trap waves along
their edges.

4.4.1 Solution for the Double Array

Consider a beam φ(~r) = ei
~k·~r incident on a double wall of identical atoms at

positions ~rn = (−w2 , nd), ~rm = (w2 ,md). Each atom has an energy dependent t



Figure 4.4: Flux trapped inside a circle of N atoms; N = 200 and N = 2000.
The resonances are approximately (but not always exactly) at wavenumbers
kn such that J0(knR) = 0, corresponding to bound states of the hard walled
circle billiard (ticks and grid lines on the plot). Bringing the scatterers closer
together increases the Q factor, and also moves the resonances closer to the
billiard values. Note the difference at high energies.

matrix s(k).
We apply Foldy’s method, where the indices n, p run over the arrays at

x = ∓w2 respectively. The resulting Lippmann Schwinger equation is

ψ(~r) = φ(~r) + s
∑
n

G0(~r, ~rn)ψn(~rn) + s
∑
p

G0(~r, ~rp)ψp(~rp) (4.26)

where

ψn(~rn) = φ(~rn) + s
∑
m6=n

G0 (k |m− n| d)ψm(~rm) (4.27)

+s
∑
p

G0

(
k

√
w2 + (p− n)2

d2

)
ψp(~rp)

ψp(~rp) = φ(~rp) + s
∑
m

G0

(
k

√
w2 + (m− p)2

d2

)
ψm(~rm)

+s
∑
q 6=p

G0 (k |q − p| d)ψq(~rq)



4.4. Scattering from Double Walls 81

w

d

Figure 4.5: Scattering from a double line of atoms.

and

G0(kr) = − i
2
H0(kr) (4.28)

is the two-dimensional free space Green’s function (~ = m = 1).
To make a long story short, we are able to find the solution simply by

replacing the t matrix s(k) with two renormalized t matrices:

ψ(~r) = φ(~r) + s̃L
∑
n

G0(~r, ~rn)ψn(~rn) + s̃R
∑
p

G0(~r, ~rp)ψp(~rp)

where

s̃L ≡ 1
2
s

[
1 + eikxw

1− s(Gs +Gd)
+

1− eikxw

1− s(Gs −Gd)

]
s̃R ≡ 1

2
s

[
1 + e−ikxw

1− s(Gs +Gd)
+

1− e−ikxw

1− s(Gs −Gd)

]
and we have defined two sums,



Gs ≡
∑
u6=0

G0(kd |u|)eikyud (4.29)

Gd ≡
∑
u

G0

(
k
√
w2 + u2d2

)
eikyud. (4.30)

to which we can apply Kummer’s method to put in a nicer form.
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4.4.2 Details

Consider first the wavelets ψn(~rn) representing the left hand side of the array.
Iterating (4.27) to second order in s, we find

ψn(~rn) = eikynd×

e−ikx w2 + se−ikx
w
2

∑
m 6=n

G0 (k |m− n| d) eikymd

+seikx
w
2

∑
m

G0

(
k

√
w2 + (m− n)2

d2

)
eikymd

×s
∑
p 6=m

G0 (k |p−m| d) eikypd

+s2eikx
w
2

∑
m 6=n

G0 (k |m− n| d)

+seikx
w
2

∑
m

G0

(
k

√
w2 + (m− n)2

d2

)
eikymd

+s2e−ikx
w
2

∑
m6=n

G0 (k |m− n| d)

×s
∑
p 6=m

G0 (k |p−m| d) eikypd + s2eikx
w
2

∑
m6=n

G0 (k |m− n| d)

×
∑
p

G0

(
k

√
w2 + (p−m)2

d2

)
eikypd

+s2eikx
w
2

∑
m

G0

(
k

√
w2 + (m− n)2

d2

)
×
∑
p 6=m

G0 (k |p−m| d) eikypd

+s2e−ikx
w
2

∑
m

G0

(
k

√
w2 + (m− n)2

d2

)
×
∑
p

G0

(
k

√
w2 + (p−m)2

d2

)
eikypd

+O(s3)
]

As formidable as the above expression appears, its diagrammatic represen-
tation would be quite simple. Furthermore, upon re-indexing the sums, they



each collapse, so that the above reduces to

ψn(~rn) = e−ikx
w
2 eikynd × [1 + sGs + seikxwGd

+s2G2
s + 2s2eikxwGsGd + s2G2

d

+O(s3)]

We see that this is simply a modified binomial series, where the terms with odd
orders of Gd carry a relative phase of eikxw. Simplifying,

ψn(~rn) = φ(~rn)× 1
2

∞∑
n=0

sn {(Gs +Gd)n + (Gs −Gd)n

+eikxw × [(Gs +Gd)n − (Gs −Gd)n]
}

= φ(~rn)× 1
2

[
1 + eikxw

1− s(Gs +Gd)
+

1− eikxw

1− s(Gs −Gd)

]
.

By an identical argument,

ψm(~rm) = φ(~rm)× 1
2

[
1 + e−ikxw

1− s(Gs +Gd)
+

1− e−ikxw

1− s(Gs −Gd)

]
.

4.5 Higher Partial Wave Scattering from an Im-

purity in a Quantum Wire1

4.5.1 Introduction

In Chapter 2, we had examined scattering from an s wave scatterer in a 2D
wire. At energies relevant to electron imaging experiments, an AFM tip cannot
be accurately modeled as an s wave scatterer. One way of modeling the tip
is to build a “bump” out of many small s wave scatterers of variable scattering
lengths. Although this method is one way to approach the problem, it is compu-
tationally expensive, particularly when the scatterer is confined in a waveguide.
Furthermore, it is not amenable to analytic treatment. In this section, we gen-
eralize our multiple scattering formalism for the single scatterer in a wire to
include higher partial waves. Our approach is based on the method presented
in [55] for including higher partial waves in free space multiple scattering.

1This section was written in collaboration with J. D. Walls.
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4.5.2 Including Higher Partial Waves in Free Space 2D

Scattering

In this section we briefly review the free space formalism presented in [55], to
which we refer the reader for a more thorough treatment. The notation in this
chapter differs slightly from our notation in previous chapters, for consistency
with [55]. Suppose a plane wave

φm(~r) = ei
~k(θm)·~r

is incident on a scatterer in free space. We shall work in the t matrix formalism,
and include all higher partial waves. Ref. [55] (Eq. 6.31) models 2D free space
scattering, including all higher partial waves, with a scattered wavefunction of
the form

ψ(~r) = φ(~r) +
1
2

∞∑
l=0

s(l)Hl(k |~r − ~rn|) cos l(θn − θm)φ(~rn) (4.31)

= φ(~r) +
1
2

∞∑
l=0

s(l)Hl(k |~r − ~rn|) (4.32)

×(cos lθn cos lθm + sin lθn sin lθm)φ(~rn)

where θn is the local angular coordinate with origin at the scatter location, ~rn,
and the incident wavefunction is a plane wave coming from direction θm. Note
that in the case of s wave scattering, (4.31) reduces to the usual free space
scattering equation

ψ(~r) = φ(~r) + s(0)H0(k |~r − ~rn|)φ(~rn).

Our goal is to adapt the free space formalism to study scattering, including
higher partial waves, in a Dirichlet wire; under this confinement, the wave-
function satisfies the boundary conditions ψ(x, 0) = ψ(x, d) = 0. As we are
considering an array of images of a single scatterer in a wire, we are particularly
interested in the situation where the impurity lies on the y axis: See Fig. 4.6.

We define the raising/lowering operators

L± =
1
ik

(∂x ± i∂y)

which are two dimensional counterparts of the usual angular momentum opera-
tors in three dimensions. Applying these operators to the incident wavefunction



Figure 4.6: Free space scattering from a point scatterer on the y axis, at ~rn =
(0, yn). We define a local angular coordinate θn. The incident wavefunction
φm(~r) = ei

~k(θm)·~r is a plane wave coming from direction θm.

yields
L̂l±e

i~k(θm)·~r = eilθmei
~k(θm)·~r.

Defining

P̂ (l)
x =

1
2

(
L̂l+ + L̂l−

)
P̂ (l)
y =

1
2i

(
L̂l+ − L̂l−

)
we can rewrite (4.35) in terms of our raising and lowering operators as

ψ(~r) = φ(~r) + (4.33)

1
2

∞∑
l=0

Hl(k |~r − ~rn|)×
(

cos lθnP̂ (l)
x + sin lθnP̂ (l)

y

)
φ(~r)

∣∣∣
~rn

We have expressed the scattered wave entirely in terms of the values and partial
derivatives of the incident wavefunction, evaluated at the point ~rn.

By linearity, these arguments apply to any incident function which can be
constructed as a superposition of plane waves, including modes of the Dirichlet
quantum wire.
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4.5.3 Including p Waves in the Wire

The p wave “Green’s function” in free space satisfies(
∇2 + k2

)
G(1)(~r − ~r′) = r̂0 · ∇δ(~r − ~r′)

(Eq. 6.13 of [55]). By analogy with the s-wave case, this relation enables us to
use the method of images for p waves (and other higher partial waves) also.

Although the formalism is general, we consider for now the case of only p

wave scattering. Suppose we have a series of images at ~rn, in the configuration
shown in Chapter 2. Assume a single incident mode φ(~r) which satisfies the
Dirichlet boundary conditions. The solution in the wire then takes the general
form

ψ(~r) = φ(~r) + s(0)
∞∑

n=−∞
H0(k |~r − ~rn|)ψn(~rn) + (4.34)

1
ik
s(1)H1(k |~r − ~rn|)× (cos θn∂x + sin θn∂y)ψn(~r)|~rn

where the ψn(~r) are effective wavefunctions, defined at ~rn by

ψn(~rn) = φ(~rn) + s(0)
∑
p 6=n

H0(k |~rn − ~rp|)ψp(~rp) + (4.35)

1
ik
s(1)

∑
p 6=n

H1(k |~rn − ~rp|) (cos θp∂x − sin θp∂y)ψp(~r)|~rp

In order that the scattered wavefunction (4.34) satisfy the Dirichlet boundary
conditions, we require the ψn(~r) to satisfy the following boundary conditions:

ψn(~rn) = (−1)nψ0(~r0) (4.36)

∂xψn(~rn) = (−1)n∂xψ0(~r0) (4.37)

∂yψn(~rn) = ∂yψ0(~r0). (4.38)

Applying (4.36-4.38), and then evaluating (4.35) with n = 0, where θp = ±π/2
for p > 0 or p < 0 respectively, we find

ψ0(~r0) = ∂yφ(~r0) + s0ψ0(~r0)Gr +
1
ik
s1∂yψ0(~r0)G(1)

y (4.39)



where we have defined sums

Gr =
∑
p 6=0

(−1)pH0(k |~r0 − ~rp|)

G(n)
y =

∞∑
n=1

[Hn(k |~r0 − ~r−j |)−Hn(k |~r0 − ~rj |)]

Similarly, differentiating ψ0(~r) with respect to y and then evaluating at ~r0 yields

∂yψ0(~r0) = ∂yφ(~r0)− ks0ψ0(~r0)G(1)
y (4.40)

−iks1∂yψ0(~r0)
(
G(0)
y −G(2)

y

)
We can now use (4.39-4.40) to solve for ψ0(~r0) and ∂yψ0(~r0).

Similarly, if we differentiate ψ0(~r) with respect to x and then evaluate at ~r0,
we find

∂xψ0(~r0) = ∂xφ(~r0) +
s1

ik
∂xψ0(~r0)Gx (4.41)

where

Gx =
∞∑
j=1

(−1)j
[
H1(k |~r0 − ~r−j |)
|~r0 − ~r−j |

+
H1(k |~r0 − ~rj |)
|~r0 − ~rj |

]
.

Rearranging (4.41) yields

∂xψ0(~r0) =
∂xφ(~r0)

1− s1
ikGx

.

Given the form of the initial wavefunction, and in particular its value and the
value of its derivatives at the scatterers, we are thus, able to solve for ψ0(~r0),
∂xψ0(~r0), and ∂yψ0(~r0). Substituting these values into (4.34), we have the full
scattered wavefunction including p wave scattering. This method generalizes to
higher partial waves.

A number of lattice sums arise in this formalism: In addition to Gr (which
we used frequently in Chapter 2), Gx and Gy are required. Standard tech-
niques exist for calculating rapidly convergent expansions for such sums: See in
particular [56].



Chapter 5

Nonadiabaticity

This chapter diverges from the previous chapters on multiple scattering. Here,
we examine breakdown of the adiabatic approximation in two physical systems.
The first system, which we discuss in Section 5.1, is a simple wavepacket model
of two cold atoms. The second system, treated in Section 5.2, is a simple model
Hamiltonian for four interacting atoms.

5.1 Measuring Nonadiabaticity via Trap Loss:

The Cold Atomic Hot Potato1

A problem of general interest in atom trapping is the validity of the Born-
Oppenheimer (BO) approximation, i.e., determining the relative time scales
at which the nuclear and electronic degrees of freedom evolve. We propose a
scenario which addresses this question. Trapping potentials typically depend
on an atom’s internal state. A single two-level atom in its ground state might
feel a trapping potential, while the same atom in its excited state would feel an
anti-trapping potential. Suppose we have many such atoms, coupled by van der
Waals interactions. If all the atoms are trapped initially, what happens when a
single atom suddenly becomes excited? Two possible limits suggest themselves:
(1) the excited atom leaves the trap, or (2) the atoms share the excitation so
rapidly that they all remain trapped–an effective “hot potato!” Asking how well
the BO approximation holds means determining which limit applies in a real

1This section has benefitted from helpful discussions with D. V. Bevilaqua and M. Lara
Garrido.
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cold atom gas. We begin with a time-dependent quantum mechanical model
for the simplest possible case, two atoms confined to lines. The results suggest
that the real physical situation, millions of atoms in three dimensions, may be
amenable to mixed quantum-classical treatment.

5.1.1 Introduction

In the adiabatic Born-Oppenheimer approximation, the nuclear and electronic
degrees of freedom of a problem separate. However, when a system’s electronic
energies become degenerate, the BO approximation fails–meaning that the mo-
tion of atoms causes the atoms to (nonradiatively) change their electronic states.
Breakdown of the BO approximation has observable consequences in many phys-
ical systems–but the results are generally obtained indirectly via analysis of line
broadening, etc.

We propose a scheme which would render BO breakdown directly experi-
mentally observable. Suppose we have a two-level atom in a trap. The trapping
potential an atom feels generally depends on the atom’s internal state (e.g.,
its hyperfine-Zeeman sublevel). Suppose the atom in its electronic ground state
feels a trapping potential, and the same atom in its excited state feels a repulsive
potential and flies out of the trap.

Now consider many such atoms in a trap, coupled by van der Waals interac-
tions. We begin with all the atoms in their ground (trapped) state. Suppose that
suddenly, a laser is turned on and one atom becomes excited. What happens?
One possibility is that the excited atom is simply ejected from the trap. An-
other possibility is that the excitation is shared among all the atoms so quickly
that on average, each atom feels a trapping potential, and none falls out of the
trap–an effective atomic hot potato! By way of context, the hot potato lies at
the intersection of two physical phenomena: (1) transitions between trapped
and untrapped atomic states and (2) resonant (nonradiative) energy transfer.
The first phenomenon has applications in BEC formation by radiofrequency (rf)
evaporative cooling [57], as well as in rf output couplers [58]. Additionally, such
transitions are the mechanism underlying Majorana loss. Hopping via van der
Waals interactions is called Forster-Dexter energy transfer; it has applications
in molecular fluorescent resonant energy transfer (FRET), and plays a major
role in phenomena ranging from photosynthesis to CH2I2 photodissociation [59].
Forster exchange between Rydberg atoms has been proposed as a mechanism
for neutral atom quantum computing [60–62].

Although the hot potato is an interesting problem in its own right, the
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connection to BO breakdown is not immediately obvious. However, one can
phrase the problem in terms of adiabatic and diabatic nuclear dynamics. Recall
that the nuclear motion is related to the motion of the atom in the trap, while
excitation transfer corresponds to motion in the electronic degrees of freedom.
Thus, in the adiabatic scenario, the nuclear motion is slow–the atom has a long
time to transfer its excitation to another atom before leaving the trap. In an
diabatic situation, the nuclear motion is fast, and the atom leaves before it has a
chance to transfer its excitation. Experimentally, in the extreme adiabatic limit,
one would not expect to see any trap loss, whereas in the extreme diabatic limit
a steady trickle of atoms would leave the trap.

Inspired by a similar problem in chemical physics [59], we model the cold
atom system first with a very simple time-dependent quantum mechanical model
of two atoms on rails, approaching each other with some impact parameter. This
model is deliberately minimalist; we wish to capture only two relevant aspects
of the physics, the interplay between dissociation and resonant energy exchange.

The quantum mechanical model, although realistic, is only tractable for
oversimplified reduced-dimensionality models (and thus impractical for a real
system). The quantum mechanical treatment, however, suggests that the nu-
clear degrees of freedom are amenable to classical treatment, thus opening up
the idea of treating more realistic systems via mixed-quantum classical methods.

The immediate question arises of what sorts of systems would lend them-
selves to experimental investigation of the hot potato. Many alkali atoms have
coupled trapped and untrapped levels. For example, in 23Na, the trapping
potential depends on the hyperfine-Zeeman state of each atom. Trapped and
untrapped states include 32S1/2, |F = 1,MF = 1〉 and 32P1/2, |F = 2,MF = 2〉
states, which are low- and high-field seeking respectively. Another example is
the |F = 2,MF = 1〉 and |F = 2,MF = 0〉 states of the 5S1/2 manifold of
87Rb, coupled by an rf field; in fact, these two states have been proposed as
trapped and untrapped states for output coupler experiments on BECs [58].
The mechanisms of resonant energy transfer would be the van der Waals inter-
action between electric dipole moments in the first case, and spin exchange in
the second.

Resonant energy transfer has been observed at a rapid rate in experiments
on frozen Rydberg gases [63]. Rydberg gases are perhaps the ideal system
to observe the hot potato effect in; the huge electric dipole moments between
levels mean a fast transfer rate, while the spontaneous emission lifetimes are
very large [64].



5.1.2 Formalism

We describe our N -atom system by the wavefunction

Ψ(~r, ~R; t) =
N∑
i=1

χi(~R; t)φi(~r) (5.1)

where ~R = (~R1, ~R2, ... ~RN ) is the vector of nuclear coordinates and describes the
position of each atom, and ~r = (~r1, ~r2, ..., ~rN ) are electronic coordinates. The
χi(~R; t) are the nuclear wavefunctions describing the distribution of the atoms
in the trap, while the φi(~r) are the basis of electronic states, related to which
of the atoms is the “hot potato.”

Our system starts out in its ground state, with each atom feeling an attrac-
tive trapping potential. We model the trap potential as harmonic, so that the
initial state of the system is the ground state |Ψg〉 of the Hamiltonian

Ĥ0 = ~T +
1
2

N∑
i=1

~R2
i +

∑
i<j

V (~Rij),

the sum of kinetic energy, trapping, and interatomic potentials, Rij being the
distance between atoms i and j. Note that, due to the repulsive potential, this
Hamiltonian is non-separable, thus N particles require the full 3N coordinates.

The interatomic potential is approximately V (Rij) = C6
R6
ij
− C8
R8
ij

+ C10
R10
ij

, where

values of the Cn for various atoms are readily available. The well due to V (Rij)
is extremely narrow on the scale of the trap, and the vast difference in length
scales presents a problem numerically–if we choose a grid with spacing appro-
priate to the trap, then the interatomic potential falls between grid points and
disappears completely. Fortunately, when such a vast difference in length scales
is present, the only relevant parameter describing the narrow potential is its scat-
tering length a. A common trick in time-independent treatments of combined
trap/interatomic potentials is to replace the interatomic potential by a zero-
range Fermi pseudopotential of equivalent scattering length [65]. Zero-range
potentials are, however, difficult to deal with numerically in our time-dependent
formalism. We therefore replace the interatomic potential by a finite-width di-
lated pseudopotential–a shallow square well with sufficient width that it shows
up on our grid, but with scattering length a. In any case, the effect of the
interatomic potential is quite negligible on the scale of the trap.

To return to our problem, suppose that the jth atom suddenly jumps (per-
haps due to brief application of a resonant, σ+-polarized optical field) from its
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ground state to its excited state. In our picture, the system has now landed on
one of the N coupled, excited-state diabatic surfaces. Each of the N surfaces
corresponds to one atom being excited, and they are all coupled because the
excited atom can pass its excitation to other atoms via van der Waals inter-
actions. We need to specify the new model Hamiltonian in the basis of these
diabatic states. Let ~R = (~R1, ~R2, ... ~RN ) denote the positions of the N atoms,
and approximate the trapping (and repulsive) potentials as locally harmonic.
Then the relevant Hamiltonian is

Ĥij =

{
T̂i + V̂ diabi (~R) i = j

V̂ij(~R) i 6= j
(5.2)

where T̂i = − 1
2∇

2
~ri

are the kinetic energy operators (T̂ is diagonal, since we have
constructed Ĥ in a diabatic basis) and V̂ij are the electronic energy surfaces. The
off-diagonal terms of Ĥ correspond to the coupling by which the excitation hops
between the atoms. Let V̂ = V̂ (trap)+V̂ (c) where V̂ (trap) is the external trapping
potential and V̂ (c) is the interatomic coupling. We consider only the sum of two-
dipole interactions, and note that, if Wdd = e2

R3
ij

[
~Ri · ~Rj − 3

(
~Ri · n̂

)(
~Rj · n̂

)]
is the usual dipole-dipole interaction between atoms i and j, then V ddi (~R) =
〈ns, np|Wdd|ns, np〉 = 0, and Vij = 〈ns, np|Wdd|np, ns〉 ∝ 1

R3
ij

for Rij larger
than the atomic radii [66]. Thus,

V̂i =
1
2

∑
j 6=i

R2
i −

1
2
R2
j (5.3)

V̂ij =
∑
j 6=i

C3

R3
ij

, Rij large (5.4)

in dimensionless units. The diabatic potentials in (5.3) correspond to the ith

atom being excited, with the other N − 1 atoms in their ground states. Thus,
the ith atom feels a repulsive harmonic potential, while the other atoms feel
attractive harmonic potentials.

Applying the usual spectroscopic formalism in a manner very similar to that
of photodissociation problems, all the time-dependent spectroscopic information
about our system is contained in the evolution of the wavefunction

|Ψ0〉 = (~µ · êi)|Ψg〉

on the excited energy surfaces (5.3,5.4). We approximate the transition dipole



operator ~µ · êi as constant.
Having our initial wavefunction and Hamiltonian in hand, what remains is

to numerically integrate the coupled time-dependent Schrodinger equations,

ˆ[T i + Vi(~R)]χi(~R; t) +
∑
j 6=i

Vij(~R)χj(~R; t) = iχ̇i(~R; t) (5.5)

with the potentials (5.3, 5.4).
A short and elegant scaling argument [67] comparing the time scales of res-

onant energy transfer and superradiant spontaneous emission shows that it is
possible to maintain coherence if the atoms are localized to a length closer then
the wavelength of the radiation. In any case, frozen Rydberg gases are often
cited as candidates for quantum logic operations primarily because their coher-
ence time is so much longer than the gate time.

5.1.2.1 Quantum Mechanical Approach

Wavepacket Methods

Propagation In order to investigate the dynamics of the system, we must
numerically integrate (5.5). To this end, we use the split-operator fast Fourier
transform algorithm [68] as generalized to coupled energy surfaces [69]. The
basic idea is to approximate the propagator as

e−iĤ∆t = e−iT̂∆t/2e−iV̂∆te−iT̂∆t/2 +O(∆t3) (5.6)

and switch back and forth between the position and momentum representations
while propagating. T̂ is diagonal in our (diabatic) basis; however, V̂ is not,
complicating its exponentiation in (5.6). So, to evaluate the potential energy
part of the propagator, we transform to the adiabatic basis, in which V̂ is
diagonal, do the exponentiation, and then transform back.

The split-operator algorithm involves implicit periodic boundary conditions
at the edges of our (finite) grid. As our problem deals with non-confining poten-
tials, reflection from the edges of the grid becomes an issue. A standard method
of dealing with reflection is to forcibly damp the wavefunction out near the grid
edges [70]. We choose the function

f(x) =

{
e−β(x−xabs)2 x ≥ xabs
1 x < xabs
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where x represents any coordinate and xabs is where the absorption begins.

5.1.2.2 Simplifying the Model

Using the above machinery, our problem of N atoms in a trap translates, from a
numerical point of view, into propagating N coupled 3N -dimensional wavepack-
ets on repulsive energy surfaces. This is a formidable task, particularly as re-
pulsive energy surfaces generate high-momentum components, which in turn
require a very fine grid. Our first simplification to reduce the dimensionality of
our problem by confining each atom to a rail which passes through the trap.
The rails are separated, at their closest approach, by an impact parameter b.

The simplified, two-state version of (5.1) is

Ψ(~r, ~R; t) = χ1(~R; t)⊗ |t, u〉+ χ2(~R, t)⊗ |u, t〉

where |t, u〉 and |u, t〉 are a diabatic electronic basis corresponding to Atom
2 untrapped and Atom 1 untrapped, respectively. Applying (5.2), the time-
dependent Schrodinger equation for the nuclear wavefunctions,

ĤΨ(~r, ~R; t) = i∂tΨ(~r, ~R; t)

becomes

=⇒

 − 1
2∇

2
1 + V11

(
~R
)

V12

(
~R
)

V12

(
~R
)

− 1
2∇

2
2 + V22

(
~R
) [ χ1( ~R;t)

χ2(~R; t)

]
= i

[
χ̇1(~R; t)
χ̇2(~R; t)

]

with diabatic potentials

V11 =
1
2

(~R2
1 − ~R2

2) (5.7)

V22 =
1
2

(−~R2
1 + ~R2

2) (5.8)

V12 =
C3

R3
12

(5.9)

as in (5.3,5.4). The diabatic surface (5.7) corresponds to Atom 1 trapped and
Atom 2 untrapped, while the diabatic surface (5.8) corresponds to Atom 2
trapped and Atom 1 untrapped. The diabatic coupling term in (5.9) is due



to the dipole-dipole coupling between atoms,

V̂dd ∝
~R1 · ~R2 − 3(~R1 · n̂)(~R2 · n̂)

R3
12

=⇒
〈
SP

∣∣∣V̂dd∣∣∣PS〉 ∝ C3

R3
12

, R12 large

where C3 ∝ e2a2
0 in cgs units, and depends on which levels are coupled.

We note that due to the parabolic level crossing and sharp coupling, the
intersection is neither a Landau-Zener (linear) nor Renner-Teller (parabolic)
situation.

Figure 5.1: Mapping of physical coordinates to the space the wavefunction lives
on. The dashed line corresponds to the closest approach of the two atoms, where
they are separated by the impact parameter b.

Fig. 5.2 shows the adiabatic and diabatic energy surfaces. Note that the
coupling is significant along the line r1 = r2, away from which the adiabatic
surfaces reduce to the diabatic surfaces.

We can define a dimensionless adiabaticity parameter (the analog of the
usual Massey parameter) for this system as ξ = ω

Ω = ωr30
C3
. This parameter com-

pares the frequency of trap oscillation to the Rabi frequency of energy transfer.
For ξ � 1 the system is in the adiabatic regime. For ξ � 1 the system is in
the diabatic limit. The following factors contribute to adiabatic behavior: high
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Figure 5.2: Adiabatic and diabatic surfaces. The adiabatic surfaces are flat
along r1 = r2, corresponding (in a quasiclassical picture) to the excitation being
exchanged so quickly among the atoms that on average each atom feels zero po-
tential. The two atom scenario is the “worst-case” scenario for observing the hot
potato, as the average “trapping” potential is non-binding. This escape should,
however, be much slower than the equivalent escape on a repulsive surface.

atomic densities, strongly coupled atomic levels, or a weak trap potential. Con-
versely, a low density of atoms, weak interaction, or a tight trap favor a diabatic
limit.

5.1.2.3 Results and Discussion

Rapid resonant exchange is observed in [63] between the 25s and 24p Rb atoms.
We choose parameters from this system, and calculate C3 between the 25s and
24p Rydberg levels of Rb (Z = 37) as

1
R3
AB

|
∫ ∞

0

r2R25s(r)R24p(r)dr|2 ×
4π
3

(δm,1 − 2δm,0 + δm,−1)



Calculating C3 The usual van der Waals interaction between two atoms
at ~rA and ~rB is

Vdd =
xAxB + yAyB − 2zAzB

R3
AB

.

Taking the matrix element between the states nS and n′P , we find

< nSAn
′PB |V̂dd|n′PAnSB > =

e

R3
AB

∫
d~rA

∫
d~rBnS(~rA)×

n′P (~rB)V̂ddn′P (~rA)nS(~rB)

=
µ

R3
AB

× 4π
3

(δm,1 − 2δm,0 + δm,−1)

where µ is the transition dipole moment between the two states. We note that
the matrix element depends on the polarization of the atoms.

C3 depends on the projection of angular momentum. For m = ±1, we find a
value of C3 = (139ea0)2. From [63], a typical atomic density of 109cm−3, V12(R)
corresponds to a Rabi frequency of 0.329 MHz. This oscillation is much faster
than a typical magnetic trap frequency (a few kHz). However, the other relevant
time scale is the escape time in the inverted trap, which depends strongly on
the initial conditions. Thus a priori it is not at all obvious which limit we will
end up in.

Suppose we choose a typical magnetic trap frequency of 1 kHz. It turns
out that a realistic physical picture lies between the adiabatic and diabatic
limits, with the relevant limit depending strongly on the atomic density: Some
representative results are shown in Figs. 5.3 and 5.4.

We draw two principal conclusions from our quantum mechanical simula-
tions. The first is that whether we are in the adiabatic or diabatic limit de-
pends sensitively on the impact parameter of a collision. The second is that
the collision dynamics, even in this truly quantum system of cold atoms, looks
surprisingly classical.

5.1.3 Possibility of a Mixed Quantum-Classical Approach

The above model gives some insight into the rather restrictive, toy model of two
atoms confined to rails in a trap. A realistic physical situation, however, corre-
sponds to roughly 108 atoms in a trap, each of which lives in three dimensions–
i.e., a realistic physical model requires not two, but 3 × 108 atoms. Cold atom
systems typically exhibit quantum phenomena. So the results of the previous
section are surprising in that the atoms appear to behave classically (albeit half
of each atom escapes, rather than one atom escaping entirely). The reason
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Figure 5.3: This figure shows the time evolution of the two atom systems for
an impact parameter b = 4.0. The top row shows the evolution on the adiabatic
surfaces; the bottom row shows evolution on the two diabatic surfaces. The ini-
tial condition is Atom 2 excited; the wavepacket is fully on one diabatic surface.
Although some amplitude leaks away, some amplitude remains trapped for 2.4
trap periods. This trapped amplitude is on both diabatic surfaces, correspond-
ing to the excitation hopping between atoms, and the atoms remaining trapped.
(Color online).

for this classical behavior is simply that interference does not matter in systems
with unstable degrees of freedom; the amplitude “leaks” away along the unstable
degree of freedom and does not return to interfere with itself.

An approximation is obviously required to treat the real system, and the
one that immediately suggests itself is some version of Tully-Preston surface
hopping [71]. The physical meaning of this is that we approximate the motion
of atoms within the trap classically, while modelling the excitation hopping
quantum-mechanically. This method is only strictly suited to weak couplings,
and in our case, as there is a great deal of hopping near r1 = r2, conservation of
energy becomes a problem. One approach would be to consider hopping between
adiabatic surfaces–the obstacle being that our Hamiltonian is better suited to a



Figure 5.4: This figure shows evolution in the diabatic basis for an impact
parameter much larger than in Fig. 5.3, b = 15.0. By 2.4 trap periods, the beam
has entirely leaked away, in contrast to Fig. 5.3 where a fraction has remained
trapped. Whether we are in an adiabatic or diabatic limit is a sensitive function
of the atom density. (Color online).

diabatic representation, and the diabatric couplings are much simpler than the
nonadiabatic matrix elements. A solution might be to tweak our model so that
hopping conserves a particle’s energy, rather than its position. In summary,
our quantum mechanical results show that the potential exists for applying
quasiclassical methods to this system, and examining the many body problem
of adiabaticity vs. nonadiabaticity.

Suppose the atoms follow classical trajectories, ~Ri(t), in the trap. As each
atom moves forward in time, it sees an effective 1D potential surface; that is,
Vi(~R) → Vi(~R(t)) = Vi(t). Using a variation on the usual surface hopping, we
compute the hopping probability at each time.

Under the above assumptions, our wavefunction becomes

ψ(t) = χ1(~R(t); t)⊗ |t, u〉+ χ2(~R(t); t)⊗ |u, t〉 ,

where the χi satisfy the time dependent Schrodinger equation,

Helψ(t) = i∂tψ(t)

= i
[(
∂t + ~v · ~∇~R

)
⊗ I
] (
χ1(~R(t); t)⊗ |t, u〉+ χ2(~R(t); t)⊗ |u, t〉

)
where ~v = d~R

dt . Putting this in matrix form, we would end up with the usual
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ugly matrix elements 〈φi|~v · ~∇~R |φj〉 where the {φ} are the electronic basis. Had
we chosen the {φ} adiabatically, the magnitudes of these matrix elements would
blow up at degeneracies, where the electronic wavefunctions changed character
quickly. However, our Hamiltonian is in a physical (diabatic) basis in which we
have already assumed that the magnitudes of such coupling terms are negligible.
Thus we have simply

i

[
χ̇1

χ̇2

]
=

[
V11(~R(t)) V12(~R(t))
V12(~R(t)) V22(~R(t))

][
χ1

χ2

]
. (5.10)

We integrate this equation when the hot potato approaches another particle, in
order to calculate the |χi|2, which determine the hopping probability at each
time step. We find again that whether we end up in the adiabatic or diabatic
picture depends strongly on the atomic density; see e.g. Fig. 5.5.

Figure 5.5: Beginning in |u, t >, probability |χ1(t)|2 during the collision of
finding |t, u > (excitation transfer). The probability clearly depends on the
impact parameter of the collision. At high impact parameters (left) there is time
for only one exchange before the atoms separate. At lower impact parameters
(right) the excitation can hop back and forth many times, and remain trapped
briefly, before the untrapped atom escapes.

To summarize, we have in this chapter examined a model system which
loosely represents the dynamics of a pair of two level atoms in a trap/antitrap.
We find that whether the atoms are in the adiabatic limit of rapid transfer, or
the diabatic limit of trap loss, depends sensitively on the nature of the collision.
We further find that this problem is amenable to approximation via a method
that would allow the treatment of many atoms.



5.2 Degeneracies in a Simple Model System

The basic question we examine in this section is the breakdown of adiabatic-
ity in even a very simple, model N atom system. We know that the space of
degeneracies in a system generally has codimension two. In the case of three
interacting atoms (for example the hydrogen exchange reaction) the space of
degeneracies is trivial, and degeneracies occur at a diabolical point. With N

atoms the situation is considerably more complicated, and the space of degen-
eracies can be a complicated hypersurface in many dimensions. Here we choose
a toy matrix Hamiltonian which loosely mimics a system of four interacting
atoms, and explore the degeneracies of the energy levels. We find that even in
this small and simple system, the degeneracies are complicated hypersurfaces
which do not necessarily correspond to any symmetries in the system. It is an
interesting thought that a molecule consisting of N atoms is always navigating a
forest of diabolical points, with concomitant Berry phases appearing every time
the system makes a circuit of a degeneracy.

5.2.1 Hamiltonian

Transitions within the first excited manifold of a system of interacting dipoles
are described in [72] with the Hamiltonian:

Hii = ω0 − iγ0

Hij = γ0(∆ij − iCij)

where ω0 is the energy, γ0 is a decay constant, and

∆ij =
3
2

(
cos rij
r3
ij

+
sin rij
r3
ij

− cos rij
rij

)
(5.11)

Cij =
3
2

(
− sin rij

r3
ij

+
cos rij
r3
ij

+
sin rij
rij

)
. (5.12)

By first excited manifold, we refer to the set of states with a single excitation,
e.g. {|egg · · · >, |geg · · · >, |gge · · · >} where g and e denote ground and excited
states. This Hamiltonian assumes fixed nuclei, which intuitively makes sense
for cold atoms. However, adiabatic approximations break down near nuclear
configurations where energy surfaces cross. That is, one can no longer separate
nuclear and electronic motions, and nuclear motion causes transitions between
electronic states.
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As we are interested in a simple model N -atom system, we examine the
following simplified Hamiltonian, loosely based on the dipole-dipole Hamiltonian
in [72]. It comes from dropping the non-Hermitian part (neglecting transitions
to other manifolds) and assuming small interatomic distances:

Hii = ω0

Hij =
cos(rij)
r3
ij

N atoms in a plane will have, excluding rotations and translations, 2N−3 inde-
pendent degrees of freedom. Assuming a real, Hermitian Hamiltonian, surfaces
of conical intersections will always have codimension two. We take N = 4, that
is, a 5-D parameter space consisting of displacements along two strain modes,
two shuffle modes, and a breathing mode. Surfaces of intersections of two PESs
will be three-dimensional.

5.2.2 Energy Surfaces

Figure 5.6 shows how the energies vary along each normal mode, and the cor-
responding nuclear configurations. Degeneracies or avoided crossings appear in
each of these plots, often in configurations that do not have any obvious symme-
tries. The first and second strain modes pass through points where two nuclei
are in the same place; not surprisingly, the energies diverge there. The breath-
ing mode is–surprisingly, not trivial. The symmetric stretch vibration occurs
entirely on the surface of symmetry-allowed degeneracies at the D4h configura-
tion. So only three eigenvalues appear on the plot, because two are everywhere
degenerate. The interesting point to note is that multiple surfaces intersect
in several places. The first and second shuffle modes have equal energies, by
symmetry, and we do not illustrate the second shuffle mode.

5.2.3 Level Spacings

An interesting question might be, if we randomly choose points in the parameter
space (corresponding to nuclei moving randomly through a set of configurations)
how often we land near a degeneracy. The distribution of level spacings is shown
in Fig. 5.7.
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Figure 5.7: Energy Spacings– If we randomly choose points in some bounded
region of the parameter space, we obtain the above distribution of nearest-
neighbor energy spacings. Note the double peak structure: Random matrix
theory predictions for the Gaussian Orthogonal Ensemble do not apply–our
ensemble of matrices is not random, but rather highly constrained.

5.2.4 Degeneracies

Degeneracies will occur in 3-D subspaces of the full 5-D parameter space. The
first goal is to locate and understand the topology of these surfaces of intersec-
tions.

Degeneracies were located by minimizing the squared energy differences
∆E2

ij using a Nelder-Mead simplex functional optimization algorithm with sev-
eral thousand random initial conditions. Fig. 5.8 shows a section of the 3-D
surface of degeneracies, as the nuclei are deformed along the first strain and
breathing modes.

These curves are slices of much more complicated 3-D hypersurfaces. Figure
(5.9) shows what the surfaces look like in one more dimension. Notable fea-
tures are the existence of multiple, disjoint surfaces. One parameter value can
correspond to multiple degeneracy surfaces.

We have, in this section, examined a very simple matrix Hamiltonian with
interactions depending on atomic distances. We have demonstrated that not
only do degeneracies arise frequently in configuration space, but that the surfaces
of energy degeneracies have a complicated structure. Although our model does
not represent a specific physical system, the phenomena we describe are general.
Surfaces of degeneracies have codimension two, and for many-atom systems,
sheets of degeneracies occur in unexpected locations: A moving system of many
atoms can circle one of these surfaces, and pick up a Berry phase.



Figure 5.8: Cross-section of the three separate surfaces of degeneracies. We saw
before (Fig. 5.6) that there should be a degeneracy for all square configurations,
i.e., along the y-axis of this figure. Interesting points are the bifurcations in the
curves of degeneracies, and the fact that at several points, three energy surfaces
intersect. The axes describe the deformation, in the same arbitrary units as in
Fig. 5.6.
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Appendix A

2D Scattering and the t

Matrix

Multiple scattering via Foldy’s Method [18] has been treated extensively in sev-
eral other theses in the Heller Group [1, 32, 55]; the notation I shall follow is
identical to that of [55]. Beyond the bare essentials, I shall not reproduce the
methodology here.

Consider a particle, in two dimensions, scattering from a radial potential
V (r) which is finite range. For our purposes, a t matrix is a formal tool for
representing, exactly, the long range s wave scattering of any potential. In the
t matrix approximation, outside the potential, the scattered wavefunction is

ψ(~r) = ei
~k·~r − i

2

∞∑
l=−∞

ilsl(k)H(1)
l (kr)eilθ,

an incoming wave plus a scattered wave which is a superposition of higher partial
waves. Using the Jacobi-Anger expansion for a plane wave,

ψ(~r) =
1
2

∞∑
l=−∞

ileilθ
{

[1− isl(k)]H(1)
l (kr)− iH(2)

l (kr)
}
.

The scattered wavefunction is a superposition of incoming and outgoing partial
waves. The amplitude of each incoming partial wave cannot change; only its
phase can, and we thus define the phase shifts in the usual way, so that

1− isl(k) = e2iδl . (A.0.1)
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This requirement is a case of the optical theorem, and applying

|1− isl(k)|2 = 1

yields the optical theorem on the t matrix:

Ims(k) = −1
2
|sl(k)|2 . (A.0.2)

In the low-energy limit, we can work in the s wave approximation, where

ψ(~r) = ei
~k·~r − i

2
s(k)H(1)

0 (kr). (A.0.3)

Essentially, the t matrix representation takes the part of the scattered wavefunc-
tion which is outside of the potential, and extends it to all space. This means
that inside the potential, the t matrix representation is meaningless, but outside
of the potential, the point t matrix potential mimics exactly the long-range s
wave scattering for any potential.

Simulating Different Scattering Potentials

To simulate a hard disk of radius r = a, we can apply the boundary condition
ψ(a) = 0. Applying this boundary condition to (A.0.3), and expanding the
incoming wavefunction in cylindrical waves, we find the condition

s(k) = −2i
J0(ka)

H
(1)
0 (ka)

. (A.0.4)

It is easy to show that (A.0.4) satisfies the optical theorem (A.0.2).
Suppose we wish to simulate an attractive scatterer.1 An example of a

potential for which we can analytically calculate the s wave scattering properties,
is a soft attractive disk

V (r) = −V0Θ(r − a)

1An immediate thought might be to simply use (A.0.4) with a < 0; however, it turns out
that for a < 0, (A.0.4) is nonunitary. A related form which is unitary for all ka is

s(k) = −2isign(ka)
J0(ka)

H
(1)
0 (ka)

,

however a < 0 is no longer a scattering length, since the zero-energy wavefunction no longer
vanishes there.



where V0 > 0. The s wave phase shift is determined by the continuity of the
logarithmic derivative of the wavefunction at r = a :

tan δ0 =
kJ0(qa)J1(ka)− qJ1(qa)J0(ka)
qJ1(qa)Y0(ka)− kJ0(qa)Y1(ka)

(A.0.5)

where the inside wavenumber is

q ≡
√

2(E + V0).

Combining (A.0.1) with (A.0.5), we can find the t matrix appropriate to the
attractive potential:

s(k) =
i tan δ0

1− i tan δ0
. (A.0.6)

After some algebra, it is possible to confirm that the negative energy poles of
the t matrix (A.0.6) occur at

qK0(κa)J1(ka) = κK1(κa)J0(ka) (A.0.7)

where κ ≡
√
−2E; Eq. (A.0.7) can be derived directly as the characteristic

equation for bound states of the 2D cylindrical well.



Appendix B

Wire as a Diffraction

Grating

In Sec. 2.3.1, we used the mathematical equivalence of the wire to a periodic
array of image scatterers. Further extending the analogy, we now reformulate the
problem of the confined impurity as one of diffraction from an infinite, periodic
grating, and the scattered wavefunction as a diffracted beam. We wish to note
the detail that because of our Dirichlet boundary conditions, our incident beam
is a sum of two plane waves rather than a single plane wave:

φm(x, y) =
1√
k

(m)
x

eik
(m)
x |x−x0|χm(y)

=
1
id

1√
k

(m)
x

eik
(m)
x |x−x0| ×

(
eik

(m)
y y − e−ik

(m)
y y

)
.

Due to the linearity of Schrodinger’s equation, we can consider each of the
constituent plane waves as scattering independently. The relevant physics thus
reduces to diffraction of a single plane wave incident on a periodic array of
scatterers.

When our incident wavefunction strikes the diffraction grating, we expect
that in the Fraunhofer limit, far from the array, the diffracted beam will be a
sum of plane waves at the Bragg angles (see Fig. B.1).

Each order of the diffracted beam will have a different weighting; our object
is to cast our Green’s function (2.18) in a manner that makes these weightings
explicit. This formulation is of interest because it is equivalent to determining
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Figure B.1: A mode incident on an impurity in the hard wire is, effectively, a
superposition of two plane waves incident on an infinite diffraction grating. At
large distances from the scatterer, the scattered wave must therefore be a sum
of plane waves at the Bragg angles. Closer to the scatterers, evanescent modes
appear also.

the transmission and reflection coefficients of our system. Namely, if we send in
a mode, we would like to know what modes come out and with what intensities,
which is precisely what we shall find by casting our scattering wavefunction as
a diffracted beam.

To begin, we note that Bessel functions are regular, and consequently have
plane wave expansions. In fact, the well-known integral form of the Bessel
function

J0(kr) =
1

2π

∫ 2π

0

ei
~k(θ)·~rdθ (B.0.1)

expresses the Bessel function as an isotropic sum of plane waves emanating in
all directions from the origin. We can rewrite (B.0.1) in terms of a line integral
over kyas

J0(kr) =
1

2π

∫
C

d(k sin θ)
k cos θ

ei(kx,ky)·(x,y)

=
1

2π

∫
C

dky
kx

ei(kx,ky)·(x,y) (B.0.2)

where C lies along the real axis, going back and forth within the interval (−k, k).
We seek an analogous expression for the Hankel function. Since |ky| is always

less than k in (B.0.2), kx is always real, and the plane waves in (B.0.2) do not
include evanescent waves. Suppose we modify the right-hand side of (B.0.2).
By permitting ky to range from −∞ to ∞, we may include contributions from
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all possible evanescent waves, yielding

1
2π

∫ ∞
−∞

dky
kx

ei(kx,ky)·(x,y). (B.0.3)

For |ky| > k, the corresponding value of kx = ±iκx, where κx ≡
√
k2
y − k2, is

imaginary. Choosing the positive value makes the evanescent waves die off to
the right (x > 0) and diverge to the left (x < 0). Therefore, with this choice of
sign, we may expect (B.0.3) to converge only in the right half-plane.

By adding on an evanescent contribution to the Bessel function’s plane wave
expansion, we have in fact arrived (up to a constant) at an integral form of the
Hankel function, valid in the right half-plane only,

H
(1)
0 (kr) =

1
π

∫ ∞
−∞

dky
kx

ei(kx,ky)·(x,y) (B.0.4)

where

kx =


√
k2 − k2

y |ky| ≤ k

i
√
k2
y − k2 |ky| > k.

Eq. (B.0.4) is a well-known expansion, [21] readily obtained by Fourier trans-
forming Green’s equation.

Consider now the sum

Gp(~r; d) = − i
2

∞∑
n=−∞

H0(k |~r − (x0, nd)|) (B.0.5)

which is the Green’s function for a fully periodic array of scatterers at (x0, nd)
(or equivalently, a periodic wire with walls at y = 0, y = 2d and a scatterer
halfway between). Based on the physical picture of diffraction (Fig. B.1), the
sum in (B.0.5) must be a superposition of plane and evanescent waves at real
and complex Bragg angles respectively. We wish to find the weighting on each
wave (analogous to the structure factor in X-ray diffraction).

To find the weights, we calculate the expansion explicitly. Using (B.0.4) in
(B.0.5), we find



Gp(~r,~0) = − i
2

∞∑
n=−∞

H0(k|~r − ~rn|)

= − i

2π

∞∑
n=−∞

∫ ∞
−∞

dky
kx

ei(kx,ky)·(x−x0,y−nd)

= − i

2π

∫ ∞
−∞

dky
kx

ei(kx,ky)·(x−x0,y)
∞∑

n=−∞

(
e−i(kyd)

)n
= − i

d

∫ ∞
−∞

dky
kx

ei(kx,ky)·(x−x0,y) (B.0.6)

×
∞∑

m=−∞
δ(ky −

2mπ
d

)

where we have used

∞∑
n=−∞

[
eikyd

]n
= 2π

∞∑
n=−∞

δ(kyd− 2πn),

(similar to stationary phase) to reach the expression (B.0.6). One can, more
rigorously, reach (B.0.6) via the Poisson sum formula. [34,73]

Performing the integral in (B.0.6) yields the final expression

Gp(~r, ~rm; k, d) = − i
d

∞∑
n=−∞

1

k
(n)
x

eik
(n)
x |x−x0| cos(k(n)

y y)

where we use the absolute value signs to extend the Green’s function to converge
on x < x0, and we define

k(n)
x = k cos θn

k(n)
y = k sin θn

where the θn are the Bragg angles

θn = arcsin
2nπ
kd

n integer

and the complex-valued θn are the result of the logarithmic singularity.
The image representation of our wire is not exactly the periodic array of Fig.

B.1. The images alternate in sign, and in general the scatterer is off-center. We
can, however, represent our image array as a sum of two arrays, as in Fig. B.2.
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Figure B.2: In the case of the off-center scatterer, the relevant image array is
the sum of two periodic arrays of opposite signs. If the source is at (x0, y0), the
image locations are (x0, y0 + 2nd), (x0,−y0 + 2nd) for the positive and negative
arrays respectively, where n = ±1,±2, . . . .

One can easily verify that the Green’s function for the wire with point source
at ~r0 = (x0, y0) becomes the sum

Gw(~r, ~r0) =
1
2

[Gp(~r − y0ŷ; 2d)−Gp(~r + y0ŷ; 2d)]

= −i
∞∑
n=1

1

k
(n)
x

eik
(n)
x |x−x0| (B.0.7)

×χn(y)χn(y0)

where the Bragg angles are modified slightly from the case of the periodic wire,
and defined by

sin θn =
nπ

kd
.

The form (B.0.7) is identical to (2.14). We have shown that diffraction translates
the method of images into the usual eigenfunction expansion of the Green’s
function.



Appendix C

Improving Convergence of

the Green’s Function

Form (2.14) of the Green’s function converges slowly also. The reason for the
slow convergence is the singularity at the source, which is present but disguised
in the evanescent modes. We use the Kummer method for convergence accelera-
tion [73], which also makes the singularity explicit. Kummer’s method involves
adding and subtracting a multiple of the static (k = 0) Green’s function.

The wire Green’s function is

Gw(~r, ~r; k) = −i
∞∑
m=1

1

k
(m)
x

χm(y)χm(y0)eik
(m)
x |x−x0|

We wish to consider a more rapidly converging form of the Green’s function:

Gw(~r, ~r0; k) = [Gw(~r, ~r0; k)− αGw(~r, ~r0; 0)] (C.0.1)

+αGw(~r, ~r0; 0)

where α is a constant which we shall determine. The static Green’s function
happens to be the potential which solves Poisson’s equation for a point charge
between two grounded, conducting plates, [21] and we can put it in closed form
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as follows:

Gw(~r, ~r0; 0) = −
∞∑
m=1

d

mπ
χm(y)χm(y0)e−

mπ
d |x−x0|

= − 1
π

∞∑
m=1

d

m
× 2
d

sin
(mπy

d

)
× sin

(mπy0

d

)
e−

mπ
d |x−x0|

=
1
π

∞∑
m=1

1
m

[
cos
(
mπ(y + y0)

d

)
− cos

(
mπ(y − y0)

d

)]
e−

mπ
d |x−x0|

=
1
π

Re
∞∑
m=1

1
m
e−

mπ
d |x−x0|

[
e
imπ(y+y0)

d

−e
imπ(y−y0)

d

]
=

1
π

Re
∞∑
m=1

(
Zm+
m
−
Zm−
m

)

where
Z± ≡ e−

π
d |x−x0|e

iπ(y±y0)
d .

Using the identities
∞∑
m=1

Zm

m
= − ln(1− Z)

and
Re lnZ = ln |Z|



we find

Gw(~r, ~r0; 0) =
1
π

ln
∣∣∣∣1− Z−1− Z+

∣∣∣∣
=

1
2π

ln

(∣∣∣∣1− Z−1− Z+

∣∣∣∣2
)

=
1

2π
ln

∣∣∣∣∣e
π
d |x−x0| − e iπd (y−y0)

e
π
d |x−x0| − e iπd (y+y0)

∣∣∣∣∣
2

=
1

2π
ln


(
e
π
d |x−x0| − e iπd (y−y0)

)
(
e
π
d |x−x0| − e iπd (y+y0)

) (C.0.2)

×

(
e
π
d |x−x0| − e− iπd (y−y0)

)
(
e
π
d |x−x0| − e− iπd (y+y0)

)


=
1

2π
ln

cos
[
π
d (y − y0)

]
− cosh

[
π
d (x− x0)

]
cos
[
π
d (y + y0)

]
− cosh

[
π
d (x− x0)

] .
The singularity of the Green’s function arises from a logarithmic singularity

in the Hankel term at the source. Near the scatterer, the contribution from this
term becomes

lim
r→r0

G0(r, r0; k) = − i
2

lim
~r→~r0

H0(k |~r − ~r0|)

= − i
2

+
1
π

ln
(
k

2
|~r − ~r0|

)
+

1
π
γ

= − i
2

+
γ − ln 2

π
+

1
π

ln (k|r − r0|)

where γ is the Euler-Mascheroni constant, while from Eq. (C.0.2), we find that
the limiting behavior of the static Green’s function is (after some algebra)

lim
~r→~r0

Gw(~r, ~r0; 0) = − 1
π

ln
2kd
π

sin
(πy0

d

)
+

1
π

ln (k|r − r0|) .

In order to cancel the logarithmic singularity in Green’s function, we thus require
that

α = 1 (C.0.3)
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so that

lim
~r→~r0

[Gw(~r, ~r0; 0)−G0(~r, ~r0; k)] = − 1
π

ln
[
kd

π
sin
(πy0

d

)]
+
i

2
− γ

π

Our final form for the Green’s function, using (C.0.1-C.0.3) is

Gw(~r, ~r0; k) =
∞∑
m=1

χm(y)χm(y0)
(

1

ik
(m)
x

eik
(m)
x |x−x0|

+
d

mπ
e−

mπ
d |x−x0|

)
+

1
2π

ln
cos
[
π
d (y − y0)

]
− cosh

[
π
d (x− x0)

]
cos
[
π
d (y + y0)

]
− cosh

[
π
d (x− x0)

] .
This expression is of further use in that it allows us to obtain another form of
the renormalization constant (2.23), which we had shown to have the slowly
convergent expansion

Gr = − i
2

∞∑
m=1

(−1)mH0(k|~rm − ~r0|).

We can now expressGr in an equivalent, but more rapidly convergent expression,
suitable for numerical purposes:

Gr = lim
~r→~r0

(Gw(~r, ~r0; k)−G0(~r, ~r0; k))

= lim
~r→~r0

[(Gw(~r, ~r0; k)−Gw(~r, ~r0; 0))

+ (Gw(r, r0; 0)−G0(r, r0; k))]

=
∞∑
m=1

(
1

ik
(m)
x

+
d

mπ

)
χ2
m(y0) (C.0.4)

− 1
π

ln
[
kd

π
sin
(πy0

d

)]
+
i

2
− γ

π
.



Appendix D

Relevant Lattice Sums for

Gratings

Equations (4.29) and (3.41) are in the form of spherical waves. We would like
to find a more useful expression for (3.41), and also a more rapidly convergent
expression for (4.29). We note that sums involving Hankel functions converge
to the plane wave limit very, very slowly. The physical implication of this slow
convergence is that edge effects are more important than one might expect;
many scatterers are required to build a wall.

D.1 Plane Wave Form of Effective Green’s func-

tion

The Green’s function, as expressed in spherical waves, is

G(~r) =
∞∑

n=−∞
G0(~r, ~rn)eikynd. (D.1.1)

Substituting the two dimensional free space Green’s function (4.28), we find
that

G(~r) = − i
2

∞∑
n=−∞

H0(k |~r − ~rn|)eikynd (D.1.2)

= − i

2π

∫ ∞
−∞

dk′y
k′x

ei(k
′
x,k
′
y)·(x,y) ×

∞∑
n=−∞

[
e−i(k

′
y−ky)d

]n
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where we have used the integral form of the Hankel function in the right half
plane (x > 0). Using

∞∑
n=−∞

[
ei(k

′
y−ky)d

]n
=

2π
d

∞∑
n=−∞

δ

(
k′y − ky +

2nπ
d

)
,

we can do the integral, yielding the sum of plane waves at real and imaginary
Bragg angles,

G(~r) = − i
d

∞∑
n=−∞

1

k
(n)
x

eik
(n)
x |x|eik

(n)
y y

= − i
d
eikyy

∞∑
n=−∞

1

k
(n)
x

eik
(n)
x |x|e

−2inπ
d y (D.1.3)

where we have taken the absolute value to ensure convergence, and

k(n)
y ≡ ky −

2nπ
d

k(n)
x =

√
k2 −

(
k

(n)
y

)2

define wavevectors oriented at the Bragg angles. Imaginary values of k(n)
x cor-

respond to evanescent modes, and are present only in the near field.
This idea connects to the phenomenon of a “healing length” when examining

reflections from a corrugated wall. We note that G(~r) is singular as we approach
the origin; while the singularity is not evident in (D.1.3), it is readily apparent
in (D.1.2). Re-indexing, we find

G(~r) = − i

kxd
eikx|x|eikyy (D.1.4)

− i
d
eikyy

∞∑
n=1

(
1

k
(−n)
x

eik
(−n)
x |x|e

2inπ
d y +

1

k
(n)
x

eik
(n)
x |x|e−

2inπ
d y

)
.

The wavefunction satisfies Bloch’s theorem:

ψ(~r + dŷ) = eikydψ(~r)

but the energy is simply E = 1
2k

2 = 1
2

√
k2
x + k2

y, where kx is arbitrary.



D.2 Kummer’s Method: Extracting the Singu-

larity

As in [38], we want to apply Kummer’s method to extract the singularity from
(D.1.3), and also to obtain a rapidly convergent expression for the renormalized
scattering strength (4.29). Kummer’s method is applied in a slightly different
manner in [56]. We begin calculating (4.29) by rewriting it as

Gr = lim
~r→~0

[G(~r)−G0(~r)]

= lim
~r→~0

[(G(~r)− S(~r)) + (S(~r)−G0(~r))] (D.2.5)

where S(~r) is a sum chosen to cancel the log singularity of the Hankel function.
Looking at (D.1.3), we choose the following form for S(~r) :

S(~r) = − 1
π

∞∑
n=1

1
n
× e 2nπ

d |x| cos
(

2nπy
d

)

With this choice of S(~r), we are extracting from the singular sum in (D.1.4) its
zero energy limit, evaluated (for simplicity) for a normally incident beam. The
choice of S(~r) is not unique: Our motivation for choosing this particular form
of S(~r) is that we know that it will contain the logarithmic singularity: from
(D.1.1) we see that the zero energy limit of the Green’s function corresponds
to the limit of a Hankel function as we approach the origin, and thus the zero
energy limit of the sum will be singular.

We shall proceed to show that although both S(~r) and G(~r) separately di-
verge logarithmically at the origin,

lim
~r→~0

[S(~r)−G0(~r)]

is finite. We first find a closed form of S(~r):

S(~r) = − 1
π

Re
∞∑
n=1

1
n

(
e

2π
d |x|e

2iπy
d

)n
We can now use

Re
∞∑
n=1

Zn

n
= −1

2
ln |1− Z|2
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to rewrite

S(~r) =
1

2π
ln
[
e

2π
d |x|

(
e
−2π
d |x| − eπd |x|e

2iπy
d

)(
e
−2π
d |x| − eπd |x|e

−2iπy
d

)]
=

1
2π

ln
{

2e
2π
d |x|

[
cosh

(
2π
d
x

)
− cos

(
2π
d
y

)]}
Using this form, it is simple to take the limit,

lim
~r→~0

S(~r) = − 1
π

ln
(
kd

2π

)
+

1
π

ln kr. (D.2.6)

Subtracting the limiting form of the Hankel function

lim
~r→~0

G0(kr) = − i
2

+
γ − ln 2

π
+

1
π

ln kr

from (D.2.6), we find

lim
~r→~0

[S(~r)−G0(~r)] = − 1
π

ln
(
kd

4π

)
+
i

2
− γ

π

which is finite. Returning to (D.2.5), we find that another form of G(~r) is

G(~r) = − i
d

1
kx
eikx|x| − i

d

∞∑
n=1

(
1

k
(−n)
x

eik
(−n)
x |x|ei(ky+ 2inπ

d )y+

+
1

k
(n)
x

eik
(n)
x |x|ei(ky−

2inπ
d )y − d

inπ
e

2nπ
d |x| cos

(
2nπy
d

))
− 1
π

ln
(
kd

4π

)
+
i

2
− γ

π
,

and from this expression, we can calculate Gr:

Gr = lim
r→r0

[G(~r)−G0(~r)]

=
−i
kxd
− i

d

∞∑
n=−∞
n 6=0

(
1

k
(n)
x

− d

2i |n|π

)
(D.2.7)

− 1
π

ln
(
kd

4π

)
+
i

2
− γ

π
.

In the special case where the incident plane wave is normal to the array, this
expression is identical to Gr for a scatterer at any location in a periodic wire. In



the general case, the value of Gr differs in the values of k(n)
x , which now depend

on the incoming wavefunction.



Appendix E

Connection of the Discrete

Wall to the Continuous

Wall

The results of Section 3.5.1 can be compared with the numerical method de-
scribed in Ref. [48] for studying scattering from arbitrarily curved walls. The
method in Ref. [48] is closely related to Foldy’s method, with the exception that
all discrete sums over point scatterers are replaced by continuous integrals rep-
resenting lines of closely spaced scatterers. Ref. [48] derives the following result
for the total wavefunction, ψ(~r) for the continuous, infinite wall:

ψ(~r) = ei
~k0·~r + γ̃

∫ ∞
−∞

G0(~r, y′)eikyy
′
dy′ (E.0.1)

where
γ̃ =

γ

1− γ
∫∞
−∞G0(0, y′)eikyy′dy

. (E.0.2)

In the limit that we discretize the integrals in (E.0.1, E.0.2), and consider a
closely spaced line of sources at ndŷ, we find

ψ(~r) = ei
~k0·~r +

γ̃

d

∞∑
n=−∞

G0(~r, ndŷ)eikynd (E.0.3)

γ̃ =
γ

1− γ
∑∞
n=−∞G0(0, knd)eikynddy

. (E.0.4)
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Comparing (E.0.3, E.0.4) to (3.41, 3.18,4.29) the formalism of [48] is almost
identical to our formalism, with γ replacing s, and γ̃ replacing s̃. The boundary
wall is, effectively, built from a set of point scatterers spaced d apart, with
effective t matrices γ/d. The only difference is that in (E.0.3, E.0.4), the singular
self interaction is not removed.

Upon casting (E.0.1) in spectral form, the authors of [48] recover the single-
mode limit of our own plane wave expansion, (3.42)–in the limit where the scat-
terers are infinitely close together, the far field, single mode expansion applies
everywhere. The following values of the reflection and transmission coefficients
were derived in [48] as

R0 = − iγ

kx + iγ
(E.0.5)

T0 = 1 +R0 (E.0.6)

As in our formalism, flux conservation requires that |R0|2 + |T0|2 = 1. Ap-
plying this constraint to (E.0.5-E.0.6) yields, after some algebra, the following
constraint on γ:

Imγ = 0. (E.0.7)

The implication of (E.0.7) is that even though the wall as a whole is unitary,
the pseudo-scatterers that make up the wall do not conserve flux: They are
inconsistent with our optical theorem for an individual scatterer,

Ims = −1
2
|s|2 .

Upon examining (3.45) in detail, it can be shown that the discrepancy arises
from including the divergent self-interaction in [48].

Although our formalism for building walls is somewhat more complicated
than [48], it is consistent with building a wall out of unitary point scatterers.
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