We present an approach to quantum dynamics, based entirely on Cartesian coordinates, which covers vibrational as well as rotational motion. The initial state is represented in terms of multidimensional Gaussian wave packets. Rotational adaptation to angular momentum eigenstates is done by using angular momentum projection operators. This gives an initial state represented as a weighted superposition of Gaussians with different average orientation in space. It is shown that the subsequent dynamics can be determined from the dynamics of Gaussians corresponding to just *o* *n* *e* of these orientations. An application to the 3*D*photodissociationdynamics of ICN is presented. All six degrees of freedom which describe the internal motion of the triatomic are included, the only approximation introduced in the present calculation being the thawed Gaussian wave packet approximation for the dynamics. The total absorptionspectrum out of vibrationalâ€“rotational eigenstates of ICN as well as fully resolved final product distributions are calculated.