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Generalized dephasing relation for fidelity and application

as an efficient propagator

Lucas Kocia® and Eric J. Heller

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 19 July 2013; accepted 27 August 2013; published online 25 September 2013)

The dephasing relation (DR), a linearization of semiclassical fidelity, is generalized to include the
overlap of “off-diagonal” elements. The accuracy of the formulation is tested in integrable and
chaotic systems and its scaling with dimensionality is studied in a Caldeira-Leggett model with many
degrees of freedom. It is shown that the DR is often in very good agreement with numerically analytic
quantum results and frequently outperforms an alternative semiclassical treatment. Most importantly,
since there is no computationally expensive prefactor, and Monte Carlo Metropolis sampling is used
to facilitate the calculation, the DR is found to scale remarkably well with increasing dimension. We
further demonstrate that a propagator based on the DR can include more quantum coherence and
outperform other popular linearized semiclassical methods, such as forward-backward semiclassical
dynamics (FBSD) and the linearized semiclassical initial value representation (LSC-IVR). © 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820880]

Il. INTRODUCTION
In this work, a general notion of fidelity is defined as
FAB @) = |0*P ) = [(Wgle™ Me M) 2, (1)

where H¢ = H° +¢eV. This can be described from the
Loschmidt echo perspective as an initial state W, that is prop-
agated forward for some time ¢ obeying the Hamiltonian H°
and then propagated back for the same time obeying the per-
turbed Hamiltonian H¢. After this forward-backward propa-
gation, the inner product with a state Wp is considered. An
equivalent description is as the overlap between states W4 and
Wg both of which have been forward-propagated for time ¢
but obeying different Hamiltonians, H and H¢, respectively.
In either case, fidelity will range from being equal to 1 when
the time-propagated W4 and Wy wavefunctions are the same,
to 0 when they are fully orthogonal.

Over the years, a linearized Wigner transform of this ex-
pression has been defined in one form or another.'~!® Most
recently, Vanicek and co-workers derived a prefactorless form
that they have called the “dephasing” relation (DR).!!:!2 They
have shown that the DR possesses many promising features,
the most notable that the expression scales independently of
dimension when sampled appropriately.'* Furthermore, they
report that in general, the more complex H° and H¢ are, the
better the DR works.'*

Many efforts have been made to develop an accurate
semiclassical propagator that does not contain a prefactor de-
pendent on the computationally costly propagation of sta-
bility (monodromy) matrices. Much of this work has been
focused on the linearization of existing semiclassical meth-
ods. Perhaps the most successful are those pioneered by
Makri and co-workers'>!® and Miller and co-workers.!”!8
In their work, an additional stationary phase approximation
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(SPA) is made to combine the forward and backward propa-
gators that are present in many correlation functions. This pro-
duces the prefactorless simplified expressions called forward-
backward semiclassical dynamics (FBSD) and the linearized
semiclassical initial value representation (LSC-IVR), respec-
tively. Unfortunately, the SPA takes away quantum dynam-
ical effects (quantum correlations) which leaves these meth-
ods with short applicable timescales in many systems.'> There
have been many suggestions made on how to improve these
expressions!®2Y but this is often found to be difficult without
the inclusion of stability matrix elements.

Here, we propose a very different approach for lineariza-
tion based around fidelity and its efficient calculation by the
DR. The main result we present is a semiclassical propagator
that contains quantum dynamical effects, unlike its predeces-
sors, and is computationally cheap because it remains free of
any dependance on stability matrices.

This paper is organized as follows: The expression that
results from extending the DR to include “off-diagonal” ele-
ments (where W, # Wp) is presented in Sec. II along with
an alternate semiclassical result to be used as a compari-
son. Section III A compares the performance of these two
expressions when applied to two-dimensional test systems
that are integrable and chaotic. Section III B further com-
pares their performance with a Caldeira-Leggett model in-
volving many more degrees of freedom. Section IV shows
how the DR can be used as a semiclassical propagator and
demonstrates its promising ability to include quantum co-
herence for longer times. Section V concludes the discus-
sion and offers some potential applications for the DR-based
propagator.

Il. GENERALIZED DEPHASING RELATION

Fidelity has traditionally been defined and explored in
Eq. (1) with ¥4 = W = W. This “diagonal” version has been

© 2013 AIP Publishing LLC
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found to be well approximated by a clever first-order pertur-
bative expansion of its semiclassical Wigner transform.'#2!
Neglecting a prefactor, the resultant simplified expression
consists of an integral over the Wigner function of W(t = 0)
multiplied by a time-dependent phase term. The form of this
compact expression led Vanitek and co-workers'! 12 to call it
the “dephasing relation”.

Extending the DR to handle cases where W, # Wp pro-
duces a generalized form of fidelity capable of handling the
“off-diagonal” elements that are necessary in any applications
as a meaningful propagator. A thorough derivation for “diago-
nal” elements has been presented in the literature'*?' and can
be extended to “off-diagonal” elements simply by setting W4
# Wp. The main results are reprinted here.

Consider the Hamiltonians H° and H¢ = H° + €V . Tak-
ing the primitive semiclassical expression for Eq. (1) up to
zeroth order in € for the prefactor (i.e., neglecting it) and
up to first order in € for the phase, where the perturbation
is taken around the trajectory obeying the mean Hamiltonian

((H + H/2),

0*(t) = OFE (1)

= h’d/dqodpopva(qo, po)eiSDR(quPOU)/h 2)
in a d-dimensional system where

piB(g, p°) = iy / dsiq® — s/21W,)
X (Wplg° + s/2)e'* 7'/ 3)

is the Wigner transform of |W,4) (W[ and

t
Spr(g’, p°; 1) = —ef dTV(qy, Py, 7). )
0

with (¢, p,) following the classical trajectory of the average
Hamiltonian (H° + H¢)/2.

The Wigner transform differs from that presented in the
traditional DR solely in that py consists of the operator
|W4) (Wp| instead of | W) (W].

A. Position states

If we consider position states in Eq. (1) such that

Walg) =5(¢ —q,) and Wp(q) =45(q —qp). then the ex-
pression in Eq. (2) simplifies to

0315(1‘) = W
X fdp exp [%(qA —qp) P

i 94 +95
+hSDR< 3 ,p,t)]. )
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B. Momentum states

Similarly, for W4(p) =6(p — p,) and Wp(p) =48(p
- pB)7

1
Opg (1) = W

i
X /dq exp [%(pA —DPp)q

i Py Pp 6
—_— —_— N .
hSDR <q, B ’[>i| ( )

C. Gaussian states
For Wa(q) = (7‘[0‘2)_% exp[_(‘l;ng)z + iI’A'(g—lIA)] and

d — 2 [ S(a—
Wp(g) = (mo?)~§ exp[— U5ael 4 Pulidu)

1
OB = / dq / dp

—2q)?
xexp{ _ |:(‘IA +Z;92 q)

L Patps— 2p)o’
4#2
_i(Pa=Pr) st g5 —29)
21

@I s, pin)e )

These three examples illustrate how calculating “off-
diagonal” elements of the DR introduces an additional phase
into the traditional formula for “diagonal” elements as well as
a slightly different phase integral in Egs. (5) and (6) but does
not make evaluation any more difficult.

D. Forward-backward semiclassical expression

Substituting the Heller-Herman-Kluk-Kay coherent state
version of the semiclassical propagator for the quantum prop-
agators in Eq. (1) yields

1 € €
O(t)uk = W/dqgfdpgquo/dpo

x C, (g9, pO)C: (a6, p5)"(a). p|¥a)

ei(S,Ofo)h<

x (V|q5. pp) q. pila). pY). ®

where C;(q, py) = \/det[%(g—g(’) + ;,%’] — iyhg%; + #%)].

This integral is difficult to evaluate numerically due to
the oscillating double phase. Taking a SPA of the final term
in Eq. (8) simplifies matters. The details are presented in the
Appendix, wherein taking the SPA is shown to be equivalent
to assuming (g{, plq), py) = 8(q; — q))3(p; — p). This
allows the double-phase space integral to be replaced by a
single one over a new set of coordinates (g, p) that are de-
fined to start out at (qg, pg), forward-propagate under H° to

(q°, p°) = (¢¢, p?), and finally return via back-propagation
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under H to (q§, p)- The final result is

O(t)FB-HKR

1
= oy | a0 [ am

% Co(dor Po)dor Pol V) (Walgs. pi)e (P57 (9)

This expression will be referred to as the “Forward-
Backward Heller-Herman-Kluk-Kay relation” (FB-HKR). It
is quite different from the DR; FB-HKR is accurate up to the
assumption (gf, pflqy, py) = 38(q; —g))8(p; — p), while
the DR is accurate up to first order in € in phase and zeroth
order in the prefactor. Also, due to the prefactor containing
monodromy matrix elements, the FB-HKR is more computa-
tionally expensive than the generalized DR. Nevertheless, the
FB-HKR is introduced to serve, at the very least, as a qual-
itative semiclassical benchmark against which the accuracy
of the DR can be compared, especially in higher dimensional
systems where a full numerically analytic solution proves too
costly.

lll. NUMERICAL TESTS

Perhaps the most attractive feature of the DR is its ex-
cellent scaling with dimension, while the most important lim-
itation is its dependence on small perturbations € for accu-
rate performance. This suggests that it has a natural appli-
cation in the time-propagation of many-dimensional systems
that are weakly coupled to each other. To study the DRs per-
formance in such applications, a number of numerical tests
were performed on weakly coupled systems with two degrees
of freedom (Figures 1-3) as well as many more degrees of
freedom (Figure 5) which propagated freely of each other for-
ward in time but were coupled when returning backward in
time. What follows is a short summary of their behavior ac-
cording to the DR.

— Analytic
e FB-HKR
DR
1 . (a) System: Bath: ]
0.8 R\ g -
0.6 - X | 220, 7
04 . ° -
20.2 L Yee? \ e ]
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FIG. 1. The initial states for the system and bath harmonic oscillators are
Gaussian wave packets propagating under a bilinear coupling (€¢sysqvath)
with parameters € = 10,% = 1, At = 0.01, t = T00At, mgys = 10, mpan = 2,
Wsys = 5, Woath = 3, 0gys = 0.3, and opun = 0.7 where (a) shows “diagonal
fidelity” (¢ = pl¢ = 0.5. gy, = —1and pyiyy, = 0.5) and (b) shows “off-
diagonal fidelity” (q;‘;‘s‘ g = 0.4 and p;';‘s‘ g = —1.5). (Inset) A cartoon of
initial system and bath states.
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FIG. 2. Initial states for the system Morse oscillator (D(1 — e~%(@ban—4))2)
and bath harmonic oscillator are Gaussians coupled bilinearly (€gsysGbatn)
with parameters € = 10,7 = 1, At =0.001, t = 700At, mgys = 10, mpan = 8,
D = 10000, @ = 0.1, ge = 3, wpath = 3, 0sys = 0.1, and opan = 0.3 where

init init

(a) shows “diagonal fidelity” (¢ = 2.3 and piit = gt = pint = 0) and

SyS . e Py
(b) shows “off-diagonal fidelity” (q;‘;;“B, =2.4and P;;S‘B' = 0.0). (Inset) A

cartoon of initial system and bath states.

A. Two-dimensional systems

Figure 1 compares the fidelity of two rather different har-
monic oscillators that are coupled bilinearly together. The DR
agrees with the numerically analytic results very well. It is
important to differentiate the set-up that produced this result
from those in prior studies where the DR was found to break
down in harmonic oscillators with significantly different force
constants.””> Whereas Figure 1 shows two harmonic oscilla-
tors with different force constants which were propagated in-
dependently of each other forward in time but were coupled
together backward in time, these previous studies dealt with

—— Analytic
¢ FB-HKR
DR
1 System: Bath:
0.75 -
0.5 B
> 025 4
;,g-: - §
o) 0 System: Bath:
0.02 -
0.01 -
/ ....""‘-.\_‘__.7.... 4
0 o | L | L | L | ' | B
0 100 200 300 400 500 600 700

Time

FIG. 3. Initial states for the system and bath obeying the hyperbolic Hamil-
tonian are Gaussians coupled bilinearly (egsysgbam) With parameters € = 3,
i = 1, At = 0.001, t = 700Az1, Mgys = 2, Mpan = 0.1, Wgys = 3, wpath
= 0.6, o5ys = 0.8, and ohan = 0.2 where (a) shows “diagonal fidelity (I

sys

= pi‘;‘f =gt = piil = 0) and (b) shows “off-diagonal fidelity” (q;‘;i; .
= —1land p;‘y"s‘ > = ). (Inset) A cartoon of initial system and bath states.
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FIG. 4. Initial states for the system and bath quartic oscillators are Gaussians

coupled biquadratically (eqszysq%ath) with parameters € =2,% =1, At =0.01,

t = T00At, mgys = 3, mpath = 1, wsys = 4.5, Wpath ;_1.4, Osys = 0.2, and

obath = 0.5 where (a) shows “diagonal fidelity” (q;;‘sl =0.5, p;‘;‘s‘ =0.1,
init init

Gpan = — 1, and pyiq = 0.5) and (b) shows “off-diagonal fidelity” (¢

init
sys ‘B’

= 0.2 and pi';‘: > = 0.6). (Inset) A cartoon of initial system and bath states.

cases where each harmonic oscillator had a different force
constant going forward in time compared to backward in time.
The situation presented here seems to be much more accu-
rately reproduced by the DR, even for harmonic oscillators
with very different force constants.

Figure 2 and the inset of Figure 5 also show good agree-
ment between the DR and numerically analytic results for the
fidelity of a Morse oscillator coupled bilinearly to a signifi-
cantly different harmonic oscillator.

A very similar expression to the DR has been derived
somewhat heuristically using the Shadowing theorem'? which
relies on the accuracy of trajectories that “shadow” exact tra-
jectories. Only hyperbolic Hamiltonians have been shown to
be capable of such shadowing for infinite time. It is perhaps
for this reason that, in Figure 3, the DR shows great accuracy
at reproducing the analytic fidelity of two bilinearly coupled
hyperbolic systems.

Figure 4 shows good short-time agreement but poor long-
time agreement with the numerically analytic results for the
fidelity of two different quartic oscillators that are coupled to-
gether biquadratically. This is an interesting example because
this system is integrable going forward in time, when the os-
cillators are uncoupled, but chaotic backward in time when
they are coupled. The FB-HKR results become poor after a
short-time due to monodromy matrix divergence, a common
occurrence in chaotic systems. There are methods to deal with
this, some as simple as throwing away divergent trajectories.”

In general, it is found that the DR results for “diagonal”
and “off-diagonal” cases of fidelity agree with analytic results
for the same amount of time in any system studied. In each
case, calculations were shown for only a single value of € that
produced interesting fidelity decay. Larger values of € and DR
calculations at longer times generally produce poorer agree-
ment with analytic calculations if the fidelity decay is slow
or rephases. In particular, similar to the findings reported in

J. Chem. Phys. 139, 124110 (2013)

many studies of the FBSD?* and LSC-IVR,'" the DR per-
forms well when the overall decay in fidelity is faster than
its ability to include effects such as quantum coherence, and
poor when this overall decay is slower. This is especially true
in systems with many degrees of freedom where the preva-
lence and importance of rephasing is small.

B. Many dimensional system: Caldeira-Leggett

To study the DRs scaling with dimensionality, the fi-
delity of a Caldeira-Leggett Hamiltonian> for 1,76-2% was
studied. This involved modelling one degree of freedom of
the molecule, anharmonic stretching, through a Morse poten-
tial coupled to a harmonic oscillator (HO) bath. The Hamilto-
nian was

p2
H=+ 4+D[l- e—a(ﬂl—tle)]2

2p
f—1 2 2 2
; P w* C:
4 + L —gq. 10
+J§:1 > T3 (Q;"‘w?(q Q)> (10)

with D =12547 x 10*em™", ¢, =2.6663 A, «
=1.8576 A~!, and u equal to the reduced mass of I.
The sum runs over the (f — 1) HOs in the bath.

Coupling to the bath was chosen to be dictated by the
Ohmic spectrum (hereafter # = 1),

J(@) = ngpwe o, (11)
where
wj = —w.In [1 _ (1- eS)] (12)
f—1
are the individual HO frequencies and
¢ = w,\/ —nz(;sbfj)(l — %) (13)

are their corresponding coupling constants (otherwise
equal to zero during forward time evolution). ng = 0.25
x 213.7 uem™! is the system-bath coupling coefficient and
w, =20 cm™! is the characteristic bath frequency. Expressed
in terms of the coherent state basis used in the FB-HKR,

1
Y\# 14 .
(qlgi. pi) = (;)4 exp [—E(q —q)) +ipi(g — qi)] (14)
(where y is the width of the coherent state basis), the initial

state of the Morse oscillator was selected to be in its ground
state,

_ Y e Lo 0
\I/sys(q,p)—eXP[ 4(q q:) 4y(p pi)
+5(p+ pg - q»} (1)

with ¢; = 2.4 A (just to the left of the potential minimum), p;
=0.0,and y = /2Dua® = u;y, where Q; = 213.7 cm~ ! is
the harmonic frequency of the Morse oscillator. The HO bath
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FIG. 5. Calculation of the fidelity of a Morse oscillator (parametrized to fit a
diiodide bond) coupled to a thermalized bath of various numbers of harmonic
oscillators at 300 K via Ohmic coupling performed using the DR and FB-
HKR. (Inset) The same set-up but with only 1 HO in the bath in an excited
pure state allowing for the calculation of an analytic numerical solution. It is
likely that the analytic solution is similar in the case of the thermalized bath
and so is in comparable agreement with the DR and FB-HKR.

began as a thermalized state % at 300 K,27

Youn(Qj, Pj, Q5 P))
= —e )
I*j 2 7 1 2 ”
T(QJ+QJ)__(PJ +P7)

X exp { — ar,

i Ve l —Pw; !’
+5(PiQ; = PO+ e’ ’[FijQ,-

1
b PP 20, - P, Q’,»)]} (16)

with y =I'; = w; (where j is the HO bath index).

Figure 5 shows how the DR fares compared to FB-HKR
with 1-50 HOs in the bath, though the latter method was
only calculated with up to ten HOs. It has been shown that
a minimum of 20 HOs are necessary to reproduce the Ohmic
spectrum.”’ The DR-calculated fidelity shows convergence at
a similar number of HOs. Impressively, the DR exhibited su-
perior computational scaling compared to the prefactor-laden
FB-HKR.

IV. DEPHASING RELATION PROPAGATOR

The DR can be implemented in the semiclassical propa-
gation of any quantum state W under the Hamiltonian H in the
following general manner:

(qlw (@) = (gle”™"/"1W(0)) a7)

_ /dq/(qle—in/heiHUr/h|q/>

x (q'le” ™"/ 1w (0)) (18)

~ / dq' (011 (g, q', 1)) (gl "/ | (0)). (19)

J. Chem. Phys. 139, 124110 (2013)

The quantum propagator is split into two terms by the in-
troduction of another Hamiltonian, H': a fidelity term and an-
other term governed by free evolution under H°. In Eq. (17),
an identity operator is inserted producing a fidelity term in
Eq. (18) that is subsequently simplified by substituting in the
generalized DR. In particular, the left term in Eq. (19) is the
complex conjugate of the position state representation of the
DR for the forward Hamiltonian H and the backward Hamil-
tonian H°. Without loss of generality, it is helpful as before to
let

H=H"+¢eV. (20)

Expressed this way, it is clear that H° must be chosen wisely
so that the DR term can be accurate. Furthermore, it is prefer-
able to choose an H’ such that the free evolution term can be
calculated as easily as the DR-containing term. This can often
be accomplished in weakly interacting many-body systems
by letting H° be the Hamiltonian including only free-particle
terms while € governs the strength of V, the interparticle in-
teractions. In such applications, the splitting introduced in
Eq. (18) is similar, though not the same, as that introduced
by the “interaction” representation.

This idea can be illustrated by considering the
Hamiltonian,

H = %pz + %wzqz —aq® + bq* 2n
with w =+/2 and @ = b = 0.1. This is a strongly an-
harmonic oscillator system that has often been used be-
fore to test the limitations of other Wigner-type linearized
approximations, '3 1%20.24.29.30

Figure 6 shows the average position of an initially shifted
ground state with time. Most Wigner-type linearized approx-
imations and FBSD decay to small oscillations by the 300

— Analytic
0.5
0L
-0.5 +

(b

Average Position
S

(c

100 150 200 250 300 350 400 450 500
Time

“0 350

FIG. 6. Average position plotted versus time of a displaced wavepacket
oscillating under the highly anharmonic Hamiltonian H = % PP+ %wzqz

— 0.1 +0.1¢g* with @ =+/2. The DR curves were calculated from
the expression fdx’(Oglg’H(q, q'. )" (q'le” /1w (0)) where HO = s
+ %a)’zqz with (a) ' = w, (b) @ = 1.05w, and (¢) &’ = 1.1w.



124110-6 L. Kocia and E. J. Heller

timestep mark."> Setting H° from Eq. (19) to be equal to
%pz + %a)/zq2 simplified the free-evolution term to the an-
alytically solvable Feynman propagator for a HO. When o’
= w the DR-calculated average position is relatively poor in
Fig. 6(a) compared to the analytic result. This is because the
anharmonic terms in the potential produce an initial effective
frequency of oscillation that is faster than the harmonic fre-
quency o for the initial state. In other words, the free evolu-
tion term of Eq. (19) produces a curve with frequency w that
the DR term of the equation is unable to “dephase” effectively
enough into the proper frequency. Increasing o’ to 1.05w and
1.1 reduces the work that the DR must do to “dephase” the
free evolution term and produces better results, as demon-
strated in Figs. 6(b) and 6(c). Notice that even in the worst
example of the DR’s performance shown in Fig. 6(a), the DR
propagator far outperforms other prefactorless semiclassical
propagators since it is still oscillating after 300 timesteps (al-
though the frequency of this oscillation is incorrect).

Using Eq. (20) as a building block, it is possible to gener-
ate DR-based propagation schemes for many general expres-
sions of interest. For instance, the expression for the purity of
a system, a measure of decoherence from system-bath inter-
action, can be expressed as

Tr (p7)
- f dq,dq.dq,dq,

X dqos dq;)s dqobdq;)b

i a

x dq,dq,.dq,,dqy,

—iHt/h iHt/h
ettt g s

X (q‘yqb|e qub)

—iHUt/heth/h

X (qi,sqﬁ,ble |‘I:~%)

"

—iHt/h iH t/h ”
e |qosqob>

X (q,q)le

" mn

10 .
X (q(,sq(,b|€ iH t/helHl/h

la,q3,)
X Ioo(qos’ qob7 q:m’ q;;b’ t)
X PG5 Gy Qe Dops s (22)

where q,, 4%, .. 4.5 4., and g are system phase space

coordinates, ¢, q,. o5 q.p> 9.y and g, are bath phase
space coordinates, H is the full Hamiltonian, HP is the same
Hamiltonian with the system-bath interactions turned off, and
0" is the full time-dependent density matrix with interactions
turned off (usually this is simple to calculate).

Applying such a splitting scheme using an ancillary
Hamiltonian H° will always result in an integral with a “ker-
nel,” such as the terms with ,00 above, alongside expressions
of fidelity that can be approximated with the DR. Again, this
means that it is prudent to choose H° such that this procedure
produces an easily computed and accurate kernel while allow-
ing for the smallest effective perturbation for the DR to deal
with.

J. Chem. Phys. 139, 124110 (2013)

V. CONCLUSION

In this paper, the DR for fidelity was extended to treat
“off-diagonal” elements. Its performance was examined with
integrable and chaotic systems that were perturbatively cou-
pled to a bath with few to many degrees of freedom. In
general, the DR was found to be surprisingly accurate and
efficient.

Subsequently, a particular approach to using the DR
as a semiclassical propagator for quantum states was intro-
duced. By exploiting the DR’s unique efficiency and accuracy,
this methodology demonstrated the potential to be superior
to many previous linearization methods, such as FBSD and
LSC-IVR, granted that perturbative splitting with an ancil-
lary Hamiltonian is possible. Particularly attractive is the DR
propagator’s ability to include quantum correlation effects. A
simple calculation of the evolution of the average position of
a wavepacket in a heavily anharmonic potential using the DR-
based propagator was shown to produce better results.

The DR-based propagator has many promising appli-
cations, including serving as a more physically intuitive
approach for calculating the purity of many-dimensional
system-baths compared to the traditional master equation ap-
proach. Its derivation is vastly different from other linearized
methods and its effectiveness as a quick and cheap tool for
semiclassical propagation deserves evaluation.
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APPENDIX: FORWARD-BACKWARD FIDELITY

Consider the two exponential operators in Eq. (1) as the
A iHEr i . . .
single unitary operator U = eHTe’HT, which is the time
evolution via the time-dependent Hamiltonian,
H°0— ¢

Ao = {}'-AIé t— 0. Al

A position basis representation for U(q, q’),
(q'lU1q)

= [ @i Mg e ) a2

~ / dqHeiS(q’,q”;Oat)/heiS(q”,q;tﬁO)/h’ (A3)
where the integral over g¢” was evaluated by the SPA in
Eq. (A3) and pre-exponential factors in this “primitive” semi-
classical propagator were disregarded. The SPA condition for
this integral is

95(¢'.4"0 > 1) _95(¢”,q;t > 0)

aq” aqu ’ (A4)

r.q'.q") =p.q". 9, (A5)



124110-7 L. Kocia and E. J. Heller

where the left hand side of the final expression is the momen-
tum at time ¢ after going forward in time and the right hand
side is the momentum at time ¢ before going backward in time
from the Loschmidt echo perspective. The same is manifestly
true in this representation for the position at time ¢ after go-
ing forward in time and before going backward in time since

=9"

Moreover, the overall phase is provided in this station-
ary phase approximated propagator and is equal to ¢/$@-9/%
where

S(q’'.q)=5(q:. ;0 > 1)+ 5(q", q::0 > 1).  (A6)

Time-dependent Hamiltonians have the same Heller-
Herman-Kluk-Kay propagator as their time-independent
brethren and so Eq. (8) can be rewritten without one of its
double phase space integrals as Eq. (9).
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