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A simplification of the Heller-Herman-Kluk-Kay (HK) propagator is presented that does not suf-
fer from the need for an increasing number of trajectories with dimensions of the system under
study. This is accomplished by replacing HK’s uniformizing integral over all of phase space by a
one-dimensional curve that is appropriately selected to lie along the fastest growing manifold of
a defining trajectory. It is shown that this modification leads to eigenspectra of quantum states in
weakly anharmonic systems that can outperform the comparatively computationally cheap thawed
Gaussian approximation method and frequently approach the accuracy of spectra obtained with the
full HK propagator. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901301]

INTRODUCTION

Semiclassical quantum wave packet evolution is a pow-
erful method to evolve quantum states using classical trajec-
tories. Many efficient methods exist.

Perhaps the most widely used semiclassical method of
quantum propagation is the Heller-Herman-Kluck-Kay (HK)
propagator.'™ In brief, this method is a stationary phase ap-
proximation of the quantum coherent state propagator eval-
uated in an uniformized initial value representation. When
applied to finding autocorrelations and from the perspective
of phase space, every timestep requires the calculation of the
overlap of a swarm of “frozen” Gaussians, often selected by
Monte Carlo-based sampling dependent on the initial state.
The propagation of every such Gaussian is governed by its
central classical trajectory and each Gaussian’s contribution
to the propagator’s value at a timestep is dependent on the
classical action of its central trajectory as well as elements
of its stability matrix. In practice, computation of these ele-
ments, first order differentials of final position and momenta
with respect to initial position and momenta, is the most in-
tensive part of the procedure.

Unfortunately, HK suffers from the necessity of cal-
culating an increasing number of trajectories as the num-
ber of degrees of freedom increases. The calculation of ev-
ery trajectory’s associated stability matrix elements is doubly
confounded; not only do the number of matrix elements scale
unfavorably with degrees of freedom (4d> for d degrees of
freedom), the number of times these elements must be cal-
culated also proliferates (frequently exponentially) with the
number of trajectories. Efforts have been made to address this
issue, the most notable of which is cellular dephasing® or Fil-
inov filtering.” However, these methods have proven ineffec-
tive in many systems and only reduce the growth of trajecto-
ries necessary to a point.?
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One way around this unfavorable growth in the number
of trajectories is to take a more targeted approach in selecting
only the most important trajectories. In this paper, a simplifi-
cation to the HK formulation is presented referred to as “di-
rected” HK (DHK), wherein the uniformizing integration is
performed along a one-dimensional manifold instead of all of
phase space regardless of the dimension of the system under
study. This curve is chosen to lie along the eigenvector with
the largest eigenvalue of the stability matrix associated with
a defining trajectory. In a test set of chemically relevant an-
harmonic systems, it is shown that this approach eliminates
the scaling in the number of trajectories with dimension and
produces results that are frequently more accurate than the
computationally cheaper method of the thawed Gaussian ap-
proximation (TGA).?

METHOD

The uniformization present in the HK propagator in-
volves an integration over all the degrees of phase space
where the quantum state of interest resides (see Fig. 1(a)).
In the case that a dominant eigenvector of the stability ma-
trix governing the dynamics of the state exists, such isotropic
sampling is redundant from the perspective that all the trajec-
tories tend towards this one-dimensional manifold. Sampling
solely along this manifold reduces the integration over initial
states dramatically while still accomplishing a good sampling
of the time-evolved state (Fig. 1(c)).

As an exposition of the accuracy and efficiency of such
one-dimensional sampling, we calculate the autocorrelation
of a coherent state W, centered at (pg, q5) with width y 4
in position space. The DHK method is based on the full HK
propagator and is presented below:
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The differences between this simpler relation and the full
HK propagator are the contour integral over the curve £ and
the addition of the global normalization A/ so that the expres-
sionis 1 atz=0.

No effort is made to formally justify these simplifications
aside from pointing out the following observations. Gross-
man and Xavier have shown that the uniformization integral
in HK can be formulated as the result of inserting a coherent
state identity operator into a primitive semiclassical propaga-
tor to be evaluated fully'® (as opposed to by stationary phase).
Herein this identity operator is the one-dimensional manifold
of coherent states which is not a complete basis set (in any di-
mension except with proper modification in one dimension)
and so, at the very least, requires an overall normalization
with NV. The amplitudes and phases from the coherent states
that are neglected by this one-dimensional manifold seem
to be proportionally accounted for by the central manifold’s
values.

It is important to notice that when applied to dimen-
sions greater than one, the fluctuations in the magnitude of
the A(l, t) can cause the magnitude of DHK’s autocorrelation
to exceed 1, especially for ill-chosen manifolds £. In practice,
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this was found to be uncommon in the systems studied here
though a ceiling of 1 was forced in all numerical simulations.

NUMERICAL EXAMPLES

A series of test runs were conducted on progressively
larger molecular systems obeying the coupled Morse vibra-
tional Hamiltonian

N

1
H = Z {ﬂp? + D[1 — exp(—aqi)]z}
i=1

N N
+ 8y D PP+ fry D44, (6)

i<j i<j

Numerical tests were performed for a parametrization of
HCI(N = 1),'12 S0, (N=2),"° GeH, (N =4),'* and "**WF,
(N = 6).!5 Initial states were chosen to be displaced coher-
ent states in one vibrational degree of freedom and ground
states in all the others. DHK’s one-dimensional manifold £
was chosen to lie along the dominant stability matrix eigen-
vector for the coherent state’s central trajectory during either
its first or second quasi-periodic return to the region near its
initial state. For a list of parameters used see the Appendix.

Figure 2 shows the eigenspectra of these states—the
Fourier transforms of their autocorrelations. Comparison with

TRV
TN
\ng&JLJ!!.‘!eglb

Q
=)

e

FIG. 1. Cartoon of the effect of the uniformization integral in HK as it appears in phase space. (a) Sampling the initial state based on its absolute density
in all dimensions, as frequently performed with the Metropolis-Hastings algorithm for integration. Though initially isotropic, such a distribution of “frozen”
Gaussians propagates to become a distribution that stretches out along a dominant stability matrix eigenvector. (b) Replacing this isotropic distribution which
is slow to converge with one along an ill-chosen one-dimensional manifold will lead to a poor representation of later distributions. (c) However, if the proper
axis is used, a similar distribution to the one obtained with the full HK propagator can be formed (especially at later times) without initially sampling the full
dimensional space since all trajectories tend to that dominant manifold.
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FIG. 2. HK (black), TGA (dashed black), and DHK (red) results are pre-
sented for (a) HCI, (b) SO,, (c) GeH,, and (d) '8#WF,. Energy units are
5THz.

TGA confirms that they quickly explore anharmonic regions
of phase space and limit its accuracy. In contrast, the DHK
method along the one dimensional manifold is able to main-
tain very good accuracy with the eigenspectra of the full HK
method. Furthermore, it is able to accomplish this without
the full HK method’s unfortunate scaling with dimension (see
Figure 3). Tests with initial states involving more than a sin-
gle excited degree of freedom produced similar agreement. If
the excited states were brought down lower on the Morse po-
tential, agreement with TGA improved, as expected for such
a method that is exact for harmonic potentials.

It should be noted that all the trial runs reported here in-
volved strong recurrences in the autocorrelations of the re-
spective systems. In some cases where recurrences were ob-
served to be far smaller, the sensitivity to the selection of the
initial manifold seemed to increase (not shown). Indeed, it
was found that separate recurrences often required different
one-dimensional manifolds to be well brought out in this sim-
plification to HK. This is expected considering that their sep-
arate dynamical origins are made more apparent when they

J. Chem. Phys. 141, 181102 (2014)
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FIG. 3. Number of trajectories necessary for convergence of HK (black) and
DHK (red) spectra in Fig. 2 with respect to the dimension of the system.

only produce “glancing” blows with the initial state, leading
to weak recurrences.

CONCLUSION

It is perhaps fulfilling to discover that when the under-
lying classical dynamics of a state in an anharmonic system
exhibit a dominant stability matrix eigenvector, the prolifera-
tion of trajectories necessary to compute a semiclassical au-
tocorrelation can be severely reduced. It remains to be seen
whether this method can be formalized or if it can be gener-
alized to any submanifold of smaller dimension. The latter is
especially important in systems which exhibit more than one
dominant eigenvector.

Finally, it is also necessary to examine the robustness
of this simplification with regards to weaker autocorrelations
and in cases of more anharmonic, mixed, or chaotic dynamics.
Future directions also include examining the marriage of this
method with Filinov filtering and its usefulness in on-the-fly
calculation.

Though many possibilities for speeding up semiclassical
evaluation have been examined over the years, few have fo-
cused on using the actual dynamics of underlying trajectories
to simplify computation with “frozen” Gaussian basis sets.
Our findings offer encouraging evidence about the promise of
this direction.

APPENDIX: PARAMETERS

HCl: D = 37032cm™’, o = 163219A7", y,
=757A2, and qp = 1.87 A in excited degree of freedom.
SO,: D = 57116cm™!, o = 2.120A7!, y, = 403.3A2,
8,y = —0.0104lamu~', f =00 and g, = 1.01A in
excited degree of freedom. GeH,: D = 34716cm™!, «
=141920A7", y, =642A72, g = —0.00463465 amu",
foq = 581793 em™'A™7, and qs = 1.51 A in excited degree
of freedom. "*WF,: D = 61270cm™!, @ = 1.465 A1, Vs
=366.6A%, g, = —0.0014amu~", f, = 12890cm™" for
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adjacent bonds, f_ . = 10810 cm~! for opposite bonds, and

qs =227 A in excited degree of freedom.

dg = pg = 0.0 in all other degrees of freedom. One-
dimensional manifolds were chosen to be straight lines
centered on (pﬂ,qﬂ) with vector (— 1.0,—1.25 x 107%),
(7.02 x 1071,7.12 x 107!, 1.61 x 1073, 6.53 x 107°), (0.1,
—1.06 x 1072, —=1.05 x 1072, —1.05 x 1072, 1.19 x 1074,
9.75 x 1077,9.75 x 1077,9.75 x 10~7), and (— 9.97 x 107!,
3.67 x 1072, 3.67 x 1072, 3.30 x 1072, 3.67 x 1072, 3.70
x 1072, —2.03 x 1073, 742 x 1075, 7.42 x 1075, 6.67
x 1073,7.42 x 1073, 7.39 x 1073) for HCI, SO,, GeH,, and
IB4WF, respectively (arbitrary units).

y = v for all runs. To obtain spectra, Fourier transforms
were performed on 1000 timesteps of 0.2 fs.
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