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We offer a more formal justification for the successes of our recently communicated “directed
Heller-Herman-Kluk-Kay” (DHK) time propagator by examining its performance in one-dimensional
bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single
one-dimensional integral—a vast simplification over the usual 2N-dimensional integral in full Heller-
Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular
coherent state autocorrelations when its single integral is chosen to lie along these states’ fastest
growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the
action gradient, the better DHK will perform. We numerically examine DHK’s accuracy in a one-
dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the
method performs well. This lends some explanation for why DHK frequently seems to work so well
and suggests that it may be applicable to systems exhibiting quite strong anharmonicity. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4931406]

INTRODUCTION

Semiclassical methods for quantum time propagation
aspire to accomplish propagation of states as faithfully as
possible with as few resources as necessary. Frequently, due
to their classical underpinnings, they also yield invaluable
physical insight behind the phenomenon they are modeling.
The earliest formulation of such a method was the well-known
van Vleck-Morette-Gutzwiller (VVMG) propagator. Today,
perhaps the most popular variant of the VVMG is the Heller-
Herman-Kluk-Kay (HK) propagator,1–4 a uniformization of
VVMG expressed in so-called initial value representation. Un-
fortunately, despite many efforts, HK has seldom been found
to be computationally feasible in systems with dimension
greater than ten. This is largely due to the prohibitive cost of
computing the stability matrix elements associated with the
trajectories that contribute to its uniformizing integral. Not
only does the dimension of these matrix elements increase
with the number of degrees of freedom of the system but the
number of trajectories necessary for convergence also tends to
proliferate.

Efforts to alleviate this problem have frequently found
some effect, especially in chaotic systems. These include
cellular dephasing,5 Filinov filtering,6 and throwing out diver-
gent trajectories.7 However, these methods have proven inef-
fective in many other systems and only reduce the growth
of trajectories necessary to a point.8 There has been some
work modifying the Filinov filtering approach such that it
differs in the different directions associated with HK’s stability
matrices.9 The method presented herein is similar in spirit to
this approach.

a)Author to whom correspondence should be addressed. Electronic mail:
lkocia@fas.harvard.edu.

The classical dynamics of bound systems frequently ex-
hibit anisotropic spreading in phase space which can be taken
advantage of to perform uniformization more quickly and
cleverly. We present here a more thorough examination of a
method, called the “directed Heller-Herman-Kluk-Kay”
(DHK) propagator, that exploits this phenomenon and which
we introduced in a recent Communication.10 DHK contains
only a single integral whose domain is chosen to lie along
a one-dimensional manifold selected from the classical dy-
namics of the state of interest. In our earlier work, we showed
that it is frequently able to approach exact quantum results
even though it only requires a fraction of the computational
cost of HK. In particular, DHK was effective at obtaining
eigenspectra in anharmonic systems with up to six coupled
degrees of freedom. Here, we explore how this was possible
in a simpler one-dimensional (two dimensions in phase space)
setting.

MOTIVATION

In hyperbolic systems, there exist stable and unstable
manifolds which characterize all trajectories. Those on the
unstable manifold will exponentially depart from a fixed point
while trajectories on the stable manifold will exponentially
approach a fixed point. Though most bound systems cannot be
characterized in this way, they frequently still exhibit at least
quasi-periodic points around which growing and compressing
manifolds can be found (as long as the potential has some
anharmonicity). An example is shown in the inset of Fig. 1
where the phase space of a quartic oscillator is shown and the
trajectories making up the density of an initial coherent state
stretch out along the manifold delineated by the green curve
after it has undergone one period.
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In this paper, we consider the dynamics of quantum states that are initially coherent states. The diagonal term for the HK
propagator in a coherent state representation (equivalently the autocorrelation of a coherent state) is
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This term contains elements of the stability matrix
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Vectors are denoted by lowercase bold letters while matrices
are denoted by uppercase bold letters (e.g., a and A, respec-
tively). The coherent state Ψβ has dispersion γβ whereas γ
are those of the “frozen” coherent states centered at (p0,q0)
whose overlaps with Ψβ(0) and Ψβ(t), gβ(p0,q0)g∗β(pt,qt), are
integrated over. Each frozen state is governed by its central
classical trajectory with associated actions St and stability
matrices M(t) that are both accounted for through the phase
and preexponential terms, respectively.

As can be seen in Eqs. (1)–(3), HK has several ingredi-
ents: (a) the actual overlap between the initial and propagated
coherent states as sampled by “frozen” coherent states, (b) the
phase due to their action, and the (c) phase and (d) magnitude
of their preexponential involving stability matrix elements.
Figure 2 shows how all of these vary along the green manifold
in a quartic oscillator system for states labeled A, B, C, and

FIG. 1. The real part of the autocorrelation compared between HK, DHK,
TGA, and LHK. TGA is the thawed Gaussian approximation.11 Inset, top-
right: the phase space overlap between the initial (blue) and time evolved
(green) coherent state. The blue line corresponds to the manifold over which
DHK’s integral was evaluated. Inset, bottom-right: the Fourier transform of
the autocorrelation.

D. Forecasting the effectiveness of DHK, it can be seen that
this manifold cuts through and samples a good average of all
the ingredients in the area of highest overlap for every state
except C. Furthermore, the phase space densities of the states
asymptotically approach the manifold with time. In this way,
it can be seen that integrating along it may proportionally
represent all adjacent phase space points appropriately and so
render their explicit inclusion through a larger dimensional
integral such as HK’s unnecessary. DHK exploits this idea,
and as the right column of Fig. 2 (as well as Fig. 1) shows,
its autocorrelations can be in very good agreement with HK’s.

FORMULATION OF DHK

DHK replaces HK’s full 2N-dimensional integral with one
along a selected one-dimensional manifoldL, which can differ
from any of the 2N integral domains of the full HK expression,



Ψβ(0)|Ψβ(t)�HK =

 ∞

−∞
d2Nx0ξ(x0, t) ≈ N −1


L

dlξ(x0(l), t)
≡


Ψβ(0)|Ψβ(t)�DHK, (5)

where ξ is the integrand in the full HK formula. Naturally, we
desire such a method to still be normalized such that it is 1 at
t = 0. This means that

N =

L

dlξ(x0(l),0). (6)

It is therefore necessary in any application of Eq. (5) to
show that there exists such a manifoldL, which is a good repre-
sentation of the full HK integral’s domain. To accomplish this,
it is important to examine the “ingredients” of HK’s integrand
ξ where it is most significant, namely, for the autocorrelation
examined here, in the phase space region of the initial coherent
state.

A cursory examination of recurrences in phase space (such
as in Fig. 2) reveals that the phase due to the evolved state’s
action is often the most significantly varying component of
ξ on the scale of the area of overlap with the initial state
when compared with the magnitude and phase of the associated
preexponential. This is reasonable since the preexponential is a
function of the stability matrices of the underlying trajectories
and is responsible for preserving HK’s norm; it will only vary
between areas in phase space that are experiencing different
environments of compression and stretching and this generally
occurs at scales that are larger than that of the area of the
initial coherent state. The phase change from the action along
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FIG. 2. (a) The initial phase space distributions of the four coherent states A-D in the quartic oscillator system investigated are shown. Organized column-wise
are plots of each state’s (b) phase due to its action, and (c) phase and (d) magnitude of its HK preexponential immediately after one orbit. Also shown are the
corresponding (e) first recurrences of their autocorrelations. The blue line corresponds to the manifold over which DHK’s integral was evaluated which evolves
into the green line after one orbit. Integrating along this manifold is intended to proportionally represent the rest of the overlap phase space. Shown superimposed
on the plots in (a)-(d) are corresponding concentric initial (blue) and final (green) confidence intervals of the underlying wavefunction density.

a manifold with endpoints l1 and l2,

S(p0(l2),q0(l2), t) − S(p0(l1),q0(l1), t) =
 qt(l2)

qt(l1)
p · dq, (7)

can vary far more quickly.
Therefore, when examining the largest contributions to the

characteristics of ξ, it is often sufficient to only consider the

density of the overlap and the phase from the action at the point
of largest overlap. In particular, we proceed to approximate the
overlap of the time propagated coherent state Ψβ(t) with its
initial self Ψβ(0), by representing both by Gaussians Ψβ(q, t)
≈

(ℜγt
π

) 1
4 exp


−γt

2 (q − q2
β) + i

~
pβ(q − qβ)


(though the prop-

agated state will no longer be a Gaussian in anharmonic sys-
tems) and consider their respective Wigner functions,
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ρW(p,q, θ,γ) = 1
π~

exp



�(p − pβ,q − qβ) · R(θ)� *..
,

− 1
γ~2 0

0 −γ

+//
-

�(p − pβ,q − qβ) · R(θ)�T


, (8)

where θ denotes their rotation with respect to the origin, γ
are their dispersions along their major and minor axes (γ
=

sin θ+iγt~ cos θ
γt~2 sin θ+i~ cos θ

∈ R, not to be confused with the γ of HK’s
frozen sampling Gaussians, gβ, discussed in the Motivation),
and R(θ) is the standard 2 × 2 rotation matrix. See the
Appendix for a derivation. These Gaussian fits of Ψβ(t) are
equivalent to its propagation under a harmonic expansion
of the potential at its center in phase space (such as in the
thawed Gaussian approximation11). We further approximate
the contribution of the phase from the action via a plane
wave

exp
�
ik(cos(φ)p̂ − sin(φ)q̂) · (p,q)T/~� , (9)

which is rotated by φ with respect to the p̂ axis and
has momentum k. The top-right of Fig. 3 illustrates how
these approximate the overlap and phase of a particular
recurrence.

Under these approximations, the full HK autocorrelation
at a point in time during a recurrence corresponds to taking the
full integral of the two ρWs, with one rotated by θ compared
to the other, all modulated by the plane wave,

OHK(t) ≈
 ∞

−∞
dp

 ∞

−∞
dqρW(p,q; 0, γ0)ρW(p,q; θ,γ)

× exp
�
ik(cos(φ)p̂ − sin(φ)q̂) · (p,q)T/~� . (10)

We let the fastest growing manifold lie along the p-
coordinate cutting through the center of the coherent state
so that its stretching in this direction is proportional to γ. It
follows that θ ≈ 0 in the limit that the dynamics are wholly
linearizable. Therefore, if we set DHK’s L manifold to lie
along the state’s fastest growing manifold—which seems sen-
sible since such an L will contribute non-zero overlaps for the
appropriate times as the state passes through a recurrence—
DHK will correspond to a simplified version of Eq. (10),

ODHK(t) ≈
 ∞
−∞ dl ρW(l,0; 0, γ0)ρW(l,0; 0, γ) exp

�
ik(cos(φ)p̂ − sin(φ)q̂) · (p,q)T/~� ∞

−∞ dl ρW(l,0; 0, γ0)ρW(l,0; 0, γ0)
. (11)

We are interested in the absolute value of the difference of ODHK(t) and OHK, a measure of the expected error in DHK, where
θ ≈ 0,

|ODHK(t) −OHK(t)| =
�������


2γ

γ + γ0
e
− γγ0k

2cos2(φ)
4(γ+γ0) −

2
√
γγ0

γ + γ0
e
− k2((γγ0−1) cos(2φ)+γγ0+1)

8(γ+γ0)
�������
. (12)

An examination of this error shown in Fig. 3 reveals
that, under the aforementioned approximations of the modeled
overlap, DHK always approaches HK’s value for all k and φ
when γ

γ0
≪ 1, where γ0 is the dispersion of the initial coherent

state and γ is its dispersion during the recurrence along the
(fastest growing) manifold sampled. The greater the mani-
fold’s growth, the larger the γ is. This may seem troubling,
since it means that accuracy of DHK is only ensured when
its one-dimensional integral is performed along the direction
that has shrunk, not grown, and such a manifold would only
capture the middle of recurrences well when the center of the
state has returned near its initial point. However, all is saved
by non-zero phase variation from action; in particular, Fig. 3
shows that when DHK’s integral lies along the fastest growing
manifold (γ > γ0), its agreement with HK improves the larger
the wavevector k of the plane wave is and as long as φ, its angle,
is not perpendicular to this manifold. This last requirement
is likely due to the fact that sampling along L when it lies
perpendicular to the gradient of action would only include one
value of this variation and thus hardly serve as its representative
average.

Substituting in the appropriate angles φ of the momentum
k found at the moment of the first recurrence of states A − D
into Eqs. (10) and (11) reveals that they all satisfy this last
requirement of φ , π/2 and so lie in areas where DHK is close
to HK’s value, except for C, as indicated by the markers in
Fig. 3. For state C, the gradient of action varies perpendicular to
the major axis of its initial and final states. C’s initial dispersion
γ0 is too small for DHK to handle this perpendicular angle of
action variation φ = π/2. This agrees well with the relatively
poorer autocorrelation calculated from DHK for system C seen
in Fig. 2(e).

We have so far illustrated that it is often quite reasonable
to assume, in bound anharmonic systems exhibiting at least
quasi-periodicity, that recurrences which can be well described
by our simple Gaussian-plane wave model can frequently be
well approximated by only the single integral in Eq. (5) when
L is chosen to lie along the fastest growing manifold of the
coherent state.

Linearizing around such a chosen manifold L (by Taylor
expanding) is an approach that may appear to be closely
related, at least at first glance. Its derivation is presented in the
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FIG. 3. The contour plots for vari-
ous values of k and φ of |ODHK(t)−
OHK(t)| defined by Eqs. (10) and (11).
These indicate that when L lies along
the fastest growing manifold, DHK
fares best at reproducing autocorrela-
tions when γ

γ0
≪ 1 but also will agree

with HK better the larger k is as long
as φ , π/2. In other words, DHK will
be more accurate the greater the gradi-
ent of the action as long as it does not
face perpendicularly to L. This means
that the first recurrence of system A, B,
and D (shown in white markers) should
be well treated by DHK. C’s first re-
currence should be less accurately cap-
tured. This qualitatively agrees with the
results shown in Fig. 2(e). Note that
representing A’s phase of action by a
plane wave is a rather poor approxima-
tion as can be seen in Fig. 2, however its
wavevector in the vicinity of the overlap
is k > 0 and φ ≈ 0.

Appendix. The autocorrelations of the resultant method, which
we refer to herein as “linearized HK” (LHK), are compared
to DHK in Fig. 2(e) and are shown to often be inferior to
DHK in the quartic system examined. This can be explained
by noting that DHK’s manifold L is explicitly chosen to be
representative of all of the features of the integrand. Lineariza-
tion around the sameL further takes into account the behavior
of the integrand perpendicular and close by to this manifold,

which can be quite different from the representative whole, and
frequently, this can lead to a worse approximation.

For completeness, we substitute in ξ and expand Eq. (5),
revealing the full DHK formula as

⟨Ψβ(0) | Ψβ(t)⟩DHK

= N −1

L

dlA(l, t)gβ(l,0)g∗β(l, t)e
i
~ S(p0(l),q0(l), t), (13)

where
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
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2~2(γ + γβ) (pβ − p0(l))2 + i
~(γ + γβ) (q0(l) − qβ)(γpβ + γβp0(l))


, (14)

gβ(l, t) = exp

−1

2
γγβ

γ + γβ
(qβ − qt(l))2 − 1

2~2(γ + γβ) (pβ − pt(l))2 + i
~(γ + γβ) (qt(l) − qβ)(γpβ + γβpt(l))


, (15)

A(l, t) =


det


1
2

(
∂pt(l)
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∂qt(l)
∂q0(l) − iγ~
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i
~γ
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and

N =

L

dlg(l,0)g∗(l,0). (17)
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γβ is the dispersion of the initial Gaussian wavepacket and γ
are those of the “frozen” sampling Gaussians over which the
integration is performed.

FURTHER DISCUSSION

It is possible to gain further appreciation of the conditions
necessary for DHK to achieve good accuracy by examining
how DHK handles autocorrelations in a simpler hyperbolic
system. As Fig. 4 shows, if a coherent state is placed on
the saddle point of this system, DHK actually fails miserably
(LHK becomes exact, as expected in a system that can be
exactly linearized). On the other hand, if the coherent state is
started displaced off of the saddle point, DHK fares far better
(see Fig. 4). This can be explained by noting that the former
produces no appreciable action gradient in the overlap region
between the initial and final states and thus falls in the region of
poor performance marked by ~ in Fig. 3, whereas the latter’s
gradient is angled almost perpendicular to its major axis (as
seen in the insets of Fig. 4).

Unlike a “linearized” propagator, DHK relies on a one-
dimensional integral that can best capture all the information
of a higher dimensional phase space. When there is no
modulating phase from the action, DHK’s single integral will
likely only perform well when the dynamics of the state are
all captured by one parameter. A state in a hyperbolic system
perched on top of the saddle-point sits there indefinitely while
exhibiting both compression and stretching dynamics. On the
other hand, a state displaced from the saddle point is instead
mostly seen as translating away from the perspecitive of its
initial state. The former dynamics would likely require at least
two integrals to accurately capture if one of them is selected
along the unstable manifold; the other would have to be chosen
to take into account the compression dynamics. If we wish to
have only one integral as in Eq. (5), both the compression
and stretching dynamics need to be captured by the single
manifold we choose. Therefore, we can perhaps imagine fixing
DHK’s inferior autocorrelation in this case by choosingL such
that it lies equally along the stable and unstable manifolds,
thereby equally capturing the dynamics of both stretching and
compressing. Such a change produces the “corrected DHK”
curve in Fig. 4. Though most systems would be difficult to treat
in this way, this suggests that DHK’s results may be improved
for some states if a manifold not corresponding to the fastest
growing one is chosen as its integral’s domain.

CONCLUSIONS

Through a simple model of the dominant contributions to
HK’s integral during recurrences in one-dimensional systems,
we showed what conditions are necessary for DHK’s single
integral to perform comparably when it is chosen to lie along
the state’s fastest growing manifold. In particular, we found
that it generally works well as long as the action gradient during
recurrences is not perpendicular to this manifold.

These conditions may also hold in more dimensions and
may suggest why DHK often seems applicable in systems
with greater than one dimension, though it remains to be veri-
fied that the trends discussed here remain true. It would be
interesting to see if DHK’s performance in many-dimensions,
when L is chosen to be the fastest growing manifold of a
state, is still contingent on the gradient of its action not lying
perpendicular to L. As we showed in our earlier Commu-
nication, DHK frequently works well in many-dimensional
systems, so perhaps this is a limitation that is often sufficiently
satisfied. For attempts at implementing DHK for coherent state
autocorrelations in general systems that are at least quasi-
periodic, we recommend the same method as the one used
herein to find the best manifold L for DHK’s integral domain;
all the one-dimensional manifolds in Fig. 2 (over which the
integration was performed in DHK) were chosen by examin-
ing the stability matrix of the state’s central classical trajec-
tory, determining when its eigenvalues became real and their
magnitudes maximal near either the trajectory’s first or second
quasi-return to its initial point and choosing the associated
eigenvector. This is the approach we found most success with
and corresponds to approximately choosing the state’s “fastest
growing” manifold.

The formalism for DHK presented herein also suggests
that the method can work quite well for anharmonic systems.
In fact, the quartic potential examined in Fig. 1 illustrates how
well DHK performs for a system with a potential containing no
global quadratic terms at all. However, in general, the fastest
growing manifold of such systems will not be linear and will
exhibit some curvature since dynamics in higher than second
order potentials are not completely described by linearizing
their dynamics. This suggests that DHK may see improvement
from selecting L to be a curved manifold. It would also
be interesting to see how well DHK performs in chaotic or
unbounded systems, where previous efforts in this direction
have seen most improvement over HK (such as Filinov
filtering).

FIG. 4. The real part of the autocorrela-
tion for a coherent state obeying hyper-
bolic dynamics initially situated (a) on
the saddle point and (b) off the saddle
point. When L is selected to be along
the unstable manifold, DHK performs
better in the latter case. If L is angled
to lie equally along stable and unsta-
ble manifolds, DHK’s performance im-
proves in the former case (producing the
“corrected DHK” curve).
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APPENDIX: DERIVATION OF SELECT FORMULAE
Derivation of LHK

We change the integration over phase space variables in
HK to a new set (l0(q0,p0),n0(q0,p0)), where l0 lies along
our chosen manifold and n0 are the remaining perpendicular
degrees of freedom. The Jacobian of this transformation is
equal to 1 since it is equivalent to just a rotation and translation
of the (p0,q0) variables.

We make an approximation by linearizing our action
around n0 = nβ where (lβ,nβ) ≡ (pβ,qβ), and we define ζ to
be the argument of the exponentials in Eq. (1) such that gβ
= exp(ζ),

u(t) =


(
∂ζ(pt(lt,nt),qt(lt,nt))

∂n0

)
l0

n0=nβ

, (A1)

and

U(t) =

*
,

∂2ζ(pt(lt,nt),qt(lt,nt))
∂n2

0

+
-l0

n0=nβ

, (A2)

so that we can express gβ(p(lt,nt),q(lt,nt)) more easily in
terms of the new coordinates,

gβ(l0,n0) = exp
1

2
(n0 − nβ) · U(0) · (n0 − nβ)T + u(0) · (n0 − nβ)T + ζ

�
p(l0,nβ),q(l0,nβ)�


, (A3)

and

g∗β(lt,n0) = exp
1

2
(n0 − nβ) · U∗(t) · (n0 − nβ)T + u∗(t) · (n0 − nβ)T + ζ ∗(p(lt,nt),q(lt,nt)) |n0=nβ


. (A4)

We also linearize the action,

Slin
t (p0,q0) = Slin

t (l0,n0) ≡ St(l0,n0 = nβ) +
(
∂St
∂n0

)
l0

����n0=nβ

· (n0 − nβ)T (A5)

+
1
2
(n0 − nβ) · *

,

∂2St
∂n2

0

+
-l0

����n0=nβ

· (n0 − nβ)T . (A6)

We neglect all derivatives that are higher order than the stability matrix elements.
Hence, the integral becomes



Ψβ(0)|Ψβ(t)�HK ≈ *

,

√
γγβ

π~
�
γ + γβ

� +
-

N 
dl0


dn0Ct(l0,n0)gβ(l0,n0)g∗β(lt,n0) exp

�
iSlin

t (l0,n0)/~� . (A7)

We perform the Gaussian integral over n0 linearized around nβ to obtain the LHK,



Ψβ(0)|Ψβ(t)�LHK =

 ∞

−∞
dl0

 ∞

−∞
dn0N (l0) exp


−1

2
(n0 − nβ) · A(l0, t) · (n0 − nβ)T + b(l0) · (n0 − nβ)T


(A8)

=

 ∞

−∞
dl0N (l0)

( (2π)2N−1

det A(l0, t)
)1/2

exp
(

1
2

b(l0, t) · A(l0, t)−1 · b(l0, t)T
)
, (A9)

where

A(l0, t) = −

U(0) + U∗(t) + i

~
*
,

∂2St
∂n2

0

+
-l0

����n0=nβ


, (A10)

b(l0, t) =

u(0) + u∗(t) + i

~

(
∂St
∂n0

)
l0

����n0=nβ


, (A11)

and

N (l0,n0) = *
,

√
γγβ

π~
�
γ + γβ

� +
-

N

Ct(p0(l0),q0(l0))eiSt(l0,n0=nβ)/~

× exp

ζ(p(l0,nβ),q(l0,nβ)) + ζ ∗(p(lt,nt),q(lt,nt)) |n0=nβ


. (A12)
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Combining all of this together in one expression, we find



Ψβ(0)|Ψβ(t)�LHK =

 ∞

−∞
dl0

( √
γγβ

π~(γ + γβ)
)N

Ct(p0(l0,n0 = nβ),q0(l0,n0 = nβ))
( (2π)2N−1

det A(l0, t)
)1/2

eiSt(l0,n0=nβ)/~

× exp

ζ(p(l0,nβ),q(l0,nβ)) + ζ ∗(p(lt,nt),q(lt,nt)) |n0=nβ



× exp
(

1
2

b(l0, t) · A(l0, t)−1 · b(l0, t)T
)
. (A13)

Derivation of Eq. (8)

Suppose we start with a Gaussian Ψβ(q,0) =
(ℜγ0

π

) 1
4 exp


−γ0

2 (q − q2
β) + i

~
pβ(q − qβ)


, where γ0 ∈ R (a coherent state) and

we are interested in its return to overlap itself at (pβ,qβ) at some time t. We consider the case that the state has remained a Gaussian
but has acquired a new dispersion γt ∈ C (i.e., the state may now be rotated and squeezed with respect to its initial state). If this

Gaussian’s major axis is rotated with respect to the p- or q-axis then ∆q∆p = ~2


1 + ℜγ2

t

ℑγ2
t
> ~

2 . This corresponds to a Gaussian

aligned with some major and minor axes rotated by θ to the p,q-axes in whose frame ℑγ = 0. It can be shown11 that

ℜγt =
γ

d(θ) , (A14)

ℑγt =
(1 − γ2~2) sin θ cos θ

~d(θ) , (A15)

where

d(θ) = cos2θ + γ2~2sin2θ. (A16)

If γ = 1
~
, then the Gaussian appears to be a circle in phase space. For γ > 1

~

�
γ < 1

~

�
, its major axis corresponds to the p-axis

(q-axis) in the rotated frame.
The Wigner transform of these Gaussians is

ρW(p,q) = 1
2

 ∞

−∞
dsΨβ

(
q − s

2
, t
)
Ψ
∗
β

(
q +

s
2
, t
)

exp
(

i
~

sp
)

(A17)

= exp

−γt

(
2 − γt
ℜγt

)
(q − qβ)2 − (p − pβ)2

~2ℜγt
+

2i
~

(
γt
ℜγt

− 1
)
(q − qβ)(p − pβ)


. (A18)

Using Eqs. (A14) and (A15), this can be reexpressed in a more
intuitive form as Eq. (8).

Parameters

All results were obtained with ~ = 1. We express all quan-
tities below as defined in Eqs. (13)-(17).

For the quartic oscillator results, the mass was m
= 0.979 573, the potential was V = ωq4, withω = 2 012 640.0.
The states A-D all had dispersions γβ = γ = 1.0

0.042 561 52 . In
particular, for A, (pβ,qβ) = (0.0,0.4), L = (−0.999 997 388,
0.002 285 810 84), and the time step δt = 0.000 02; for B, (pβ,
qβ) = (240.0,0.0), L = (0.999 999 993,0.000 114 148 579),
and δt = 0.000 02; for C, (pβ,qβ) = (0.0,0.1), L
= (0.999 832 662,−0.018 293 386 2), and δt = 0.000 04;
and for D, (pβ,qβ) = (80.0,0.0), L = (0.999 999 997,
0.000 074 317 050 1), and δt = 0.000 04.

For the inverted oscillator results, the mass was m = 1
and the potential was V = −mω2q2 with ω = 1.0. The disper-
sion was γβ = γ = 1.0. The time step was δt = 0.0005. The
state displaced off the saddle point began at (pβ,qβ) = (0.0,
10.0).
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