Algorithm for efficient elastic transport calculations for arbitrary device geometries

Citation:

Mason, D.J., Prendergast, D., Neaton, J.B. & Heller, E.J. Algorithm for efficient elastic transport calculations for arbitrary device geometries. Physical Review B 84, 155401 (2011).

Abstract:

With the growth in interest in graphene, controlled nanoscale device geometries with complex form factors are now being studied and characterized. There is a growing need to understand new techniques to handle efficient electronic transport calculations for these systems. We present an algorithm that dramatically reduces the computational time required to find the local density of states and transmission matrix for open systems regardless of their topology or boundary conditions. We argue that the algorithm, which generalizes the recursive Green's function method by incorporating the reverse Cuthill-McKee algorithm for connected graphs, is ideal for calculating transmission through devices with multiple leads of unknown orientation and becomes a computational necessity when the input and output leads overlap in real space. This last scenario takes the Landauer-Buttiker formalism to general scattering theory in a computational framework that makes it tractable to perform full-spectrum calculations of the quantum scattering matrix in mesoscopic systems. We demonstrate the efficacy of these approaches on graphene stadiums, a system of recent scientific interest, and contribute to a physical understanding of Fano resonances which appear in these systems.

Publisher's Version

Last updated on 10/07/2016