# Publications

*N*-dimensional harmonic oscillator. This Schrödinger Correspondence Principle is an extremely intuitive and powerful way to approach many aspects of harmonic solids including anharmonic corrections.

We present a new paradigm for understanding optical absorption and hot electron dynamics experiments in graphene. Our analysis pivots on assigning proper importance to phonon assisted indirect processes and bleaching of direct processes. We show indirect processes figure in the excess absorption in the UV region. Experiments which were thought to indicate ultrafast relaxation of electrons and holes, reaching a thermal distribution from an extremely non-thermal one in under 5-10 fs, instead are explained by the nascent electron and hole distributions produced by indirect transitions. These need no relaxation or ad-hoc energy removal to agree with the observed emission spectra and fast pulsed absorption spectra. The fast emission following pulsed absorption is dominated by phonon assisted processes, which vastly outnumber direct ones and are always available, connecting any electron with any hole any time. Calculations are given, including explicitly calculating the magnitude of indirect processes, supporting these views.

We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time-irreversibility. We focus on three different systems, the non-interacting Anderson and Aubry-Andr\'e-Harper (AAH-) models, and the interacting spinless disordered t-V chain. First, we consider the effect on the full many-body wave-functions by measuring the Loschmidt echo (LE). We show that in the extended/ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the non-interacting localized phase where some memory is always preserved.

We discover and characterize strong quantum scars, or eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremize the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm^{−1} peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol’d diffusion, which connects different regions of phase-space by a resonance network known as the Arnol’d web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep. Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol’d web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling.

Raman spectroscopy plays a key role in studies of graphene and related carbon systems. Graphene is perhaps the most promising material of recent times for many novel applications, including electronics. In this paper, the traditional and well established Kramers-Heisenberg-Dirac (KHD) Raman scattering theory (1925-1927) is extended to crystalline graphene for the first time. It demands different phonon production mechanisms and phonon energies than does the popular "double resonance" Raman scattering model. The latter has never been compared to KHD. Within KHD, phonons are produced instantly along with electrons and holes, in what we term an electron-hole-phonon triplet, which does not suffer Pauli blocking. A new mechanism for double phonon production we name "transition sliding" explains the brightness of the 2D mode and other overtones, as a result of linear (Dirac cone) electron dispersion. Direct evidence for sliding resides in hole doping experiments performed in 2011 \cite{chenCrommie}. Whole ranges of electronic transitions are permitted and may even constructively interfere for the same laser energy and phonon q, explaining the dispersion, bandwidth, and strength of many two phonon Raman bands. Graphene's entire Raman spectrum, including dispersive and fixed bands, missing bands not forbidden by symmetries, weak bands, overtone bands, Stokes anti-Stokes anomalies, individual bandwidths, trends with doping, and D-2D band spacing anomalies emerge naturally and directly in KHD theory.

We study the dynamics of the two molecules *ortho*-aminobenzonitrile (OABN) and *para*-aminobenzonitrile (PABN). They are structural isomers, with differing asymmetries and dipole moments. In this paper, we show that the dynamics of the system strongly depends on the region of phase space of the initial rotational state, the asymmetry of the molecule, and on the direction of the dipole. We also show that the ergodicity of the system varies gradually with energy, except where the rotational energy of the initial state is much less than the Stark interaction. In this regime, the projection of the dipole along the lab-frame *z*-axis varies linearly with increasing energy and follows the microcanonical ergodic estimate. Both molecules are far from full chaos for total angular momentum quanta *J* ∈ [0,45]. However, the initial rotational states in OABN access much more of the available phase space than in PABN. We show that this is a likely cause for the experimental discrepancies in molecular beam deflection experiments.

Polyacetylene has been a paradigm conjugated organic conductor since well before other conjugated carbon systems such as nanotubes and graphene became front and center. It is widely acknowledged that Raman spectroscopy of these systems is extremely important to characterize them and understand their internal quantum behavior. Here we show, for the first time, what information the Raman spectrum of polyacetylene contains, by solving the 35-year-old mystery of its spectrum. Our methods have immediate and clear implications for other conjugated carbon systems. By relaxing the nearly universal approximation of ignoring the nuclear coordinate dependence of the transition moment (Condon approximation), we find the reasons for its unusual spectroscopic features. When the Kramers–Heisenberg–Dirac Raman scattering theory is fully applied, incorporating this nuclear coordinate dependence, and also the energy and momentum dependence of the electronic and phonon band structure, then unusual line shapes, growth, and dispersion of the bands are explained and very well matched by theory.