An efficient and accurate method to obtain the energy-dependent Green function for general potentials

Citation:

Kramer, T., Heller, E.J. & Parrott, R.E. An efficient and accurate method to obtain the energy-dependent Green function for general potentials. Journal of Physics: Conference Series 99, 012010 (2008).

Abstract:

Time-dependent quantum mechanics provides an intuitive picture of particle propagation in external fields. Semiclassical methods link the classical trajectories of particles with their quantum mechanical propagation. Many analytical results and a variety of numerical methods have been developed to solve the time-dependent Schrödinger equation. The time-dependent methods work for nearly arbitrarily shaped potentials, including sources and sinks via complex-valued potentials. Many quantities are measured at fixed energy, which is seemingly not well suited for a time-dependent formulation. Very few methods exist to obtain the energy-dependent Green function for complicated potentials without resorting to ensemble averages or using certain lead-in arrangements. Here, we demonstrate in detail a time-dependent approach, which can accurately and effectively construct the energy-dependent Green function for very general potentials. The applications of the method are numerous, including chemical, mesoscopic, and atomic physics.

Publisher's Version

Last updated on 10/07/2016