Fractal dynamics in chaotic quantum transport


Kotimäki, V., Räsänen, E., Hennig, H. & Heller, E.J. Fractal dynamics in chaotic quantum transport. Physical Review E 88, 022913 (2013).


Despite several experiments on chaotic quantum transport in two-dimensional systems such as semiconductor quantum dots, corresponding quantum simulations within a real-space model have been out of reach so far. Here we carry out quantum transport calculations in real space and real time for a two-dimensional stadium cavity that shows chaotic dynamics. By applying a large set of magnetic fields we obtain a complete picture of magnetoconductance that indicates fractal scaling. In the calculations of the fractality we use detrended fluctuation analysis—a widely used method in time-series analysis—and show its usefulness in the interpretation of the conductance curves. Comparison with a standard method to extract the fractal dimension leads to consistent results that in turn qualitatively agree with the previous experimental data.

Publisher's Version

Last updated on 10/07/2016